Synopsis

Bismuthates Are Surprisingly Conventional

Physics 11, s106
Photoemission experiments challenge the long-held belief that the high-temperature superconductivity of certain bismuth oxides is of the unconventional type.
C. H. P. Wen et al., Phys. Rev. Lett. (2018)

Certain bismuth oxides, called bismuthates, were among the first compounds found to exhibit high-temperature superconductivity. The mechanisms behind their superconductivity has, however, remained mysterious, although researchers suspected they were related to those of so-called unconventional superconductors like cuprates and iron pnictides. Now Donglai Feng at Fudan University in China and colleagues might have solved the 30-year-old bismuthate puzzle with data from new photoemission experiments. Their measurements suggest that bismuthates are not unconventional superconductors but are instead conventional Bardeen-Cooper-Schrieffer superconductors, in which superconductivity arises from the strong coupling between electrons and phonons.

The go-to technique to study superconductors is angle-resolved photoemission spectroscopy (ARPES), which provides a direct measurement of a material’s electronic structure by mapping the momenta of electrons the material emits when illuminated by UV or x-ray light. However, ARPES measurements of bismuthates were previously unfeasible, as crystals with large, clean, flat surfaces—a requirement for experiments—weren’t available. Feng’s team solved this problem by improving the synthesis process for bismuthate crystals. They also deployed an ARPES technique that uses a small-spot-size light beam, allowing them to probe crystal domains as small as 50 𝜇m .

The team’s results indicate a stronger-than-expected electron-phonon coupling in bismuthates. By comparing the measured electronic bands with density-functional-theory calculations, the authors explain that the strong coupling is due to long-range Coulomb interactions between electrons in the material—an effect that previous theoretical work had underestimated. The authors argue that accounting for such long-range interactions could help theorists predict other conventional superconductors with high critical temperatures.

This research is published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Subject Areas

SuperconductivityCondensed Matter Physics

Related Articles

Hidden Behavior of Quantum Quasicrystals
Quantum Physics

Hidden Behavior of Quantum Quasicrystals

A new theory unveils the exotic low-energy excitations of quasicrystals formed of quantum particles. Read More »

Acoustic Twist Reveals Flat Bands
Acoustics

Acoustic Twist Reveals Flat Bands

A characteristic feature of twisted graphene bilayers has now been seen in an analogous acoustic system. Read More »

Altermagnets That Turn On and Off
Condensed Matter Physics

Altermagnets That Turn On and Off

Researchers have proposed methods to tune the properties of altermagnets, a step toward practical applications for this new form of magnet. Read More »

More Articles