Synopsis

Programmable Material Inspired by Muscle

Physics 11, s116
A specially designed modular material can adopt many force-generating and energy-storing postures, which could be useful for soft robotics.
N. Kidambi et al., Phys. Rev. E (2018)

Skeletal muscle, the muscle tissue that vertebrates can actively control, has a unique microscopic structure that allows it to generate force and regain lost tension. If material designers could mimic this structure, they might be able to develop robust and adaptable components for robots. Now, Narayanan Kidambi of the University of Michigan, Ann Arbor, and colleagues have created a modular material that adopts multiple geometric arrangements. By switching between arrangements, the material can generate force and store mechanical energy.

Muscle fibers contain parallel filaments of proteins that are linked by “cross bridges.” By changing their shape and orientation, these cross bridges can force the filaments to slide relative each other, resulting in muscle contraction.

Inspired by this cross-bridge structure, the team designed a square of silicone rubber, 15 mm on a side, with four holes embedded within. When this module is compressed, the circular holes deform, adopting one of several stable configurations. For example, the scrunched holes might all lean to one side, or some might flatten horizontally while adjacent holes flatten vertically. Each configuration can store a different quantity of elastic energy, and a switch between two configurations generates a shear force perpendicular to the compression direction.

The material’s true power comes about when multiple modules are lined up. By cycling through the different configurations for each module, the ensemble can deliver a shear force with a range of magnitudes and directions. For now, the team must manually nudge the compressed material into specific configurations with a pair of tweezers. One of their next goals is to replace the tweezers with actuators, which would allow the shapes to be controlled remotely. They hope that such a modular system could become a novel building block for soft robotics designs (see related 24 October 2014 Focus story).

This research is published in Physical Review E.

–Christopher Crockett

Christopher Crockett is a freelance writer based in Arlington, Virginia.


Subject Areas

Materials ScienceMechanicsMetamaterials

Related Articles

Perfect Cones Are as Weak as They Seem
Mechanics

Perfect Cones Are as Weak as They Seem

The early failure of thin-walled cones under compression was thought to arise mainly from the presence of imperfections. A new model suggests otherwise.   Read More »

In a Twist, Composite Fermions Form and Flow without a Magnetic Field
Materials Science

In a Twist, Composite Fermions Form and Flow without a Magnetic Field

Certain twisted semiconductor bilayers are predicted to host a Fermi liquid of composite fermions—remarkably, without an applied magnetic field. Read More »

A Fine Probe of Layer Stacking
Condensed Matter Physics

A Fine Probe of Layer Stacking

The combination of nuclear magnetic resonance with first-principles calculations uncovers the stacking patterns of layers of a quantum material—information that could enable a deeper understanding of the material’s behavior. Read More »

More Articles