Synopsis

Space-Based Detection of Gravitational Waves Gets Closer

Physics 11, s16
The final results from LISA Pathfinder show that the satellite’s technology meets the requirements for space-based gravitational-wave detection.
ESA/ATG medialab

While LIGO and Virgo have grabbed everyone’s attention, researchers are quietly pushing the frontiers of gravitational-wave astronomy into space. In 2015, the European Space Agency launched LISA Pathfinder (LPF)—a spacecraft aimed at demonstrating the technology for a space-based gravitational-wave observatory known as the Laser Interferometer Space Antenna (LISA). Following its first tests in 2016 (see 7 June 2016 Viewpoint), LPF has now reported its final results. Experiments onboard the now-deactivated spacecraft have shown that the acceleration of two free-falling masses can be measured with the accuracy needed for LISA.

LISA will observe gravitational waves by measuring how they stretch and compress the distance between two free-falling masses located on different satellites. Such measurements require the test masses to be in almost perfect free fall, isolated from any internal or external forces but gravity. After the 2016 tests, the LPF team implemented a series of improvements in the equipment that protects the masses from spurious forces that might jostle them. For instance, they found ways to reduce the pressure of the gas around the masses, which could create viscous forces, and to suppress the effect of inertial forces deriving from the satellite’s rotation. As a result, compared with the 2016 results, LPF has now improved its acceleration sensitivity by a factor larger than 3 for the frequency range over which LISA is designed to operate. The results bode well for LISA, which will be sensitive to gravitational waves at lower frequencies than those detected so far. Such low-frequency waves could be created by supermassive-black-hole mergers and possibly by the inflationary expansion of the early Universe.

This research was published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Subject Areas

GravitationAstrophysics

Related Articles

Resolving Discrepancies in X-Ray Astronomy
Astrophysics

Resolving Discrepancies in X-Ray Astronomy

New laboratory measurements of the x-ray emission of ionized iron could help correct spectral models of astrophysical objects. Read More »

Sun’s Past Hidden in Tree Rings
Geophysics

Sun’s Past Hidden in Tree Rings

Physicist Fusa Miyake measures isotope abundances in ancient tree rings to uncover solar eruptions from thousands of years ago. Read More »

New Data Reveal the Heavy Side of Cosmic Rays
Astrophysics

New Data Reveal the Heavy Side of Cosmic Rays

Clean spectra for heavier cosmic rays measured on the International Space Station provide new opportunities to learn about the particles’ origins and about the interstellar medium. Read More »

More Articles