Synopsis

Seeing Anyons with an STM

Physics 11, s28
A scanning tunneling microscope might detect unambiguous signatures of anyons in graphene.
Z. Papić et al., Phys. Rev. X (2018)

Two main camps of particles rule the quantum world. Bosons are happy to share their quantum states with each other, while fermions insist on being alone. But there might be a third faction: anyons, which straddle the boson-fermion divide. Anyons are quasiparticles that can emerge when electrons are confined to two dimensions, but they are hard to study experimentally. Now Zlatko Papić of the University of Leeds, UK, and colleagues show that a scanning tunneling microscope (STM) could root out these exotic quasiparticles. Not only might this approach deliver unambiguous signatures of anyons, but it could also identify certain anyon types that could be useful for quantum computing.

Anyons are thought to arise in a state of matter known as the fractional quantum Hall phase. In this state, the measured electrical resistance implies the presence of quasiparticles that carry a fraction of the electron’s charge. These fractionally charged particles, according to theory, obey anyonic statistics. Typically, the quantum Hall phase thrives too deep inside semiconductors to be probed by surface-sensitive techniques like STMs. But the phase has been seen recently in graphene, an atomically thin material in which bound states of charged particles and quasiparticles can be seen by an STM.

The researchers combine analytical calculations with numerical simulations to demonstrate that an STM could detect the signatures of anyons in graphene. Scanning near a small defect such as a break in the lattice pattern—which is expected to trap anyons—an STM should pick up ring-like spatial patterns that are unique to anyons. The patterns should not only reveal the presence of anyons but also identify so-called non-Abelian anyons, which could enable fault-tolerant quantum computers.

This research is published in Physical Review X.

–Christopher Crockett

Christopher Crockett is a freelance writer based in Montgomery, Alabama.


Subject Areas

Quantum PhysicsCondensed Matter PhysicsTopological InsulatorsQuantum Information

Related Articles

Spin Control in a Levitating Diamond
Magnetism

Spin Control in a Levitating Diamond

By manipulating and detecting nuclear spins in a tiny floating diamond, scientists have reported a record-long spin coherence time for a levitated system. Read More »

Embedding Correlated Electrons in a Multipurpose Bath
Strongly Correlated Materials

Embedding Correlated Electrons in a Multipurpose Bath

A new framework that embeds electrons in a surrounding bath captures nonlocal correlation effects that are relevant to metals, semiconductors, and correlated insulators. Read More »

Chiral Response of Achiral Meta-Atoms
Condensed Matter Physics

Chiral Response of Achiral Meta-Atoms

Contrary to conventional wisdom, a lattice of engineered nanoparticles called meta-atoms can have a chiral optical response even when each meta-atom is not chiral. Read More »

More Articles