Synopsis

An Atlas for 2D Metals

Physics 11, s5
A new “atlas” lists the predicted properties of two-dimensional materials that could be formed from many metallic elements in the periodic table.
J. Nevalaita/University of Jyväskylä

Since the isolation of graphene in 2004, researchers have investigated hundreds of two-dimensional (2D) materials, which are one or a few atomic layers thick and can feature exceptional strength or electron mobility. The structures and properties of these materials are determined by their chemical bonds, which are usually covalent, as in graphene. But 2D materials with metallic bonding have recently shown promise for catalysis and gas sensing applications. Now two theorists have performed a systematic study of 2D materials that could be formed from many metallic elements. They then compiled an “atlas” that could guide researchers trying to synthesize these materials.

While only a few elemental 2D metals have previously been investigated, both experimentally and theoretically, Janne Nevalaita and Pekka Koskinen of the University of Jyväskylä in Finland carried out a density-functional study of 2D materials that could be formed from 45 metallic elements, ranging from lithium to bismuth. For each one, they calculated key properties related to structure and mechanical strength: average bond lengths, cohesive energy (a measure of how strongly the lattice of atoms is bound together), and bulk modulus (a measure of compressibility). The calculations suggest that the properties of a 2D material are “inherited” from those of the 3D version of the same metal and can thus be calculated from the 3D-metal’s properties through linear extrapolation. For each 2D metal, the duo analyzed three possible crystal lattice configurations—hexagonal, square, and honeycomb—pinpointing those most likely to lead to strong and stable sheets that are not prone to warping.

This research was published in Physical Review B.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Subject Areas

Materials ScienceCondensed Matter Physics

Related Articles

Optimizing Diamond as a Quantum Sensor
Atomic and Molecular Physics

Optimizing Diamond as a Quantum Sensor

Two independent groups optimize diamond-based quantum sensing by using more than 100 such sensors in parallel. Read More »

Quantum Fluid Mimics Black Hole’s Horizon
Condensed Matter Physics

Quantum Fluid Mimics Black Hole’s Horizon

A fluid made of light can simulate a black hole’s boundary, providing insights into the mysterious quantum phenomena that occur at such a boundary. Read More »

Rethinking the Anomalous Hall Effect: A Symmetry Revolution
Condensed Matter Physics

Rethinking the Anomalous Hall Effect: A Symmetry Revolution

A new symmetry-breaking scenario provides a comprehensive description of magnetic behavior associated with the anomalous Hall effect. Read More »

More Articles