Synopsis

Igniting Fusion in the Lab

Physics 12, s40
Researchers spot the signatures of nuclear fusion in a table-top-sized setup commonly used to study the plasmas found in stars and other astrophysical objects.
Y. Zhang et al., Phys. Rev. Lett. (2019)

Future nuclear fusion reactors promise the possibility of supplying Earth with an unlimited source of clean energy. Attempts to create these reactors typically involve building-sized contraptions to generate the hot plasma needed to initiate fusion reactions. Now Yue Zhang at the University of Washington in Seattle and colleagues have successfully created fusion reactions using a setup that is small enough to sit on a table.

The team’s setup is known as a Z pinch, where the electric current in the plasma generates a magnetic field that “pinches” or compresses the plasma. Researchers have used the setup for decades for lab-based studies of the hot interiors of stars. And in the 1950s, scientists detected the signatures of neutrons generated by fusion reactions inside a Z pinch. But despite this initial success, researchers had largely given up on Z-pinch-based fusion reactors because of the unstable nature of the plasmas they produce.

Zhang and colleagues have found a way to get around this problem, generating a stable plasma from deuterium and hydrogen atoms. To do this, the team applied a shear force to the plasma as it advanced through the accelerator. This generated a radial flow that maintained the plasma—a solution to the stability problem predicted by theorists. The resulting plasma stayed stable for around 16 𝜇s, 5000 times longer than possible for static plasmas. During this stable period, the team detected the presence of the high-energy neutrons expected from a fusion reaction, with this signal lasting for 5 𝜇s. While there are many steps from here to a viable reactor, the demonstration points to the potential use of a Z pinch in future compact fusion-energy generators.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Senior Editor of Physics.

Correction (11 April 2019): An earlier version of the article said the researchers had ignited sustained fusion, incorrectly implying that the fusion reactions do not require energy input.


Subject Areas

Plasma Physics

Related Articles

How Magnetic Waves Become Heat in Earth’s Magnetosphere
Astrophysics

How Magnetic Waves Become Heat in Earth’s Magnetosphere

Observations confirm a theoretical model explaining how—in Earth’s magnetosphere—large-scale magnetic waves heat up the magnetosphere’s plasma by transferring their energy to smaller-scale acoustic waves. Read More »

A New Twist on Stellarator Design
Plasma Physics

A New Twist on Stellarator Design

Breaking the problem into pieces makes it easier to design a fusion reactor’s coils for optimum energy confinement. Read More »

An Efficient Way to Optimize Laser-Driven Nuclear Fusion
Energy Research

An Efficient Way to Optimize Laser-Driven Nuclear Fusion

An automatic, algorithmic technique can find optimal laser configurations for inertial-confinement fusion—one of two main fusion approaches. Read More »

More Articles