Synopsis

Tuning an Atom’s Magnetic Field

Physics 12, s67
Researchers modify the magnetic field of a single atom, demonstrating a potential way to store information in tiny devices of the future.
K. Yang et al., Phys. Rev. Lett. (2019)

Electronic devices continue to shrink as computer engineers squeeze ever more transistors and other components onto computing chips. Researchers have realized single-atom transistors, but single-atom data storage elements are still in their design phase. To become reality, researchers have to overcome obstacles such as devising methods to manipulate the magnetic field of an individual atom, an achievement that would allow atoms to be used for information storage. Kai Yang at the IBM Almaden Research Center in California and colleagues have now done exactly that, demonstrating a technique for tuning an atom’s magnetic field strength over 4 orders of magnitude. Yang says that their technique could be used to precisely adjust the magnetic properties of a variety of systems, including molecules and magnetic nanoparticles.

The team used an iron atom on the end of a scanning tunneling microscope (STM) tip to adjust the magnetic field of a titanium atom sitting on a surface. As the iron atom—which has a fixed magnetic field—neared the titanium atom, the titanium was subjected to a magnetic force, which caused its magnetic field to align with the iron’s. This force is similar to that between two fridge magnets brought into close proximity, and it is known as the “exchange interaction.” Through quantum effects, the exchange interaction also influenced the strength of the titanium atom’s magnetic field, with a stronger interaction leading to a stronger field. The team showed that they could increase the interaction strength by moving the STM tip closer to the titanium atom. While the technique could be used to write information in magnetic memory devices, Yang says that instead they plan to use it to study exotic quantum states in systems of magnetic atoms.

This research is published in Physical Review Letters.

–Katherine Wright

Katherine Wright is a Senior Editor of Physics.


Subject Areas

MagnetismCondensed Matter Physics

Related Articles

Unexpected Universality in Superconductor Behavior
Condensed Matter Physics

Unexpected Universality in Superconductor Behavior

In contrast with predictions, researchers find no variation in a thermoelectric signal (known as the Nernst signal) for different types of superconductor. Read More »

Speeding Up Ultrafast Spectroscopy
Condensed Matter Physics

Speeding Up Ultrafast Spectroscopy

A signal-processing algorithm called compressive sensing lets researchers characterize a sample with ultrafast spectroscopy using far fewer measurements than before.  Read More »

Iceberg Shape Affects Melting
Geophysics

Iceberg Shape Affects Melting

Experiments with large ice cubes show that the melting rate depends on the shape, an effect that climate modelers may need to consider. Read More »

More Articles