Synopsis

Putting a Spin on the Josephson Effect

Physics 12, s8
Researchers demonstrate spin splitting of localized electronic states, called Andreev bound states, in a superconducting device.
L. Tosi et al., Phys. Rev. X (2019)

The Josephson “weak link”—a common element in quantum devices and sensitive magnetometers—consists of a nonsuperconducting material, such as a semiconducting nanowire, sandwiched between two superconductors. A supercurrent can flow through the wire, mediated by localized electronic states called Andreev bound states. Theory predicts that the energies of these states are influenced by the spins of the electrons and holes that give rise to these states. Now experiments by Leandro Tosi of the French Atomic Energy Commission (CEA) in Saclay, France, and his colleagues confirm these predictions. This spin degree of freedom could be used to manipulate the bound states for quantum computing applications.

The type of junction studied by Tosi and his colleagues consists of a semiconducting nanowire closing a superconducting ring of aluminum. Andreev bound states arise in the wire from a multiple-reflection process between the junction’s interfaces. When an electron traveling in the wire hits a superconducting contact, it reflects back into the wire as a hole. To conserve charge, two bound electrons—a Cooper pair—simultaneously pass into the superconductor. The reverse process occurs at the opposite end of the wire. The resulting states—made from electrons and holes reflecting back and forth in the nanowire—mediate supercurrent flow from one side to the other, a phenomenon known as the Josephson effect.

The team shows that the Andreev bound states in this system have two distinct spin states that differ in energy—so-called spin splitting. The team explained this energy difference as arising from two causes: the presence of more than one conduction channel in the wire and the coupling between the spin of the electrons and their motion.

This research is published in Physical Review X.

–Katherine Wright

Katherine Wright is a Senior Editor of Physics.


Subject Areas

SuperconductivityCondensed Matter Physics

Related Articles

How to Clean Up a Skyrmion Lattice
Condensed Matter Physics

How to Clean Up a Skyrmion Lattice

An ordered pattern of atomic spins with possible uses in computing can become more ordered if shaken at the right frequency. Read More »

Viewing Fast Vortex Motion in a Superconductor
Condensed Matter Physics

Viewing Fast Vortex Motion in a Superconductor

A new technique reveals high-speed trajectories of oscillating vortices and shows that they are 10,000 times lighter than expected. Read More »

Twisted Graphene Could Host an Acoustic Plasmon
Plasmonics

Twisted Graphene Could Host an Acoustic Plasmon

Researchers predict that a twisted graphene bilayer excited with light could host a slow-moving acoustic plasmon. Read More »

More Articles