Synopsis

Spectral Evidence of a Supersolid Made of Cold Atoms

Physics 12, s89
Researchers find new evidence that a Bose-Einstein condensate made of erbium atoms undergoes a phase transition into a bizarre form of quantum matter.
M. Mark/University of Innsbruck

For fifty years, theorists have predicted the existence of a quantum phase of matter known as a supersolid. Like a superfluid, a supersolid flows without friction, but its particles form a crystalline arrangement. Recently, researchers have been trying to induce a supersolid phase transition in a type of quantum atomic gas called a Bose-Einstein condensate (BEC). In particular, they work with atoms with large magnetic dipole moments, whose interactions can give rise to this phase of matter (see 3 April 2019 Viewpoint). Now, by combining simulations and experiments, Francesca Ferlaino of the University of Innsbruck, Austria, and colleagues have found further evidence of a supersolid phase in a BEC made of erbium atoms.

The team first used theoretical simulations to show that the energy-momentum spectrum of a material undergoing a supersolid phase transition should exhibit a distinctive structure. Approaching the transition, for a given momentum, the system will exhibit two different energy states simultaneously. The pair of states shows up on the excitation spectra as a distinctive structure that resembles two branches. The two branches arise from two simultaneous broken symmetries: one symmetry that is associated with crystalline order, and another associated with the material’s frictionless flow.

The team next investigated part of this spectrum for an erbium BEC. To do this, they corralled the atoms into a 3D trap that was elongated in one direction. Then, by quickly changing the size of the trap, they expanded and contracted the gas. The moving atoms, which interfere with each other, cause the supersolid to produce a changing interference pattern. Analyzing this pattern, the researchers identified multiple excitation modes that, like the simulation, reveal two branches. This spectral measurement lays the groundwork for future studies of supersolidity and its frictionless character in erbium BECs and other “dipolar gases.”

This research is published in Physical Review Letters.

–Sophia Chen

Sophia Chen is a freelance writer based in Tucson, Arizona.


Subject Areas

Atomic and Molecular PhysicsSuperfluidity

Related Articles

A Synthetic Lattice in a Cold Atomic Cloud
Atomic and Molecular Physics

A Synthetic Lattice in a Cold Atomic Cloud

Defining a fermionic lattice using spin and momentum instead of spatial coordinates opens the door for interacting-fermion simulations with more complex lattice geometries. Read More »

Looking Inside the Superfluid Helium-3 Universe
Fluid Dynamics

Looking Inside the Superfluid Helium-3 Universe

A camera that can capture the internal structure of superfluid helium-3 will improve our understanding of the turbulent motion of quantum fluids. Read More »

A Liquid Method to Prepare Ion Beams
Atomic and Molecular Physics

A Liquid Method to Prepare Ion Beams

A liquid-metal jet can strip electrons from a high-intensity, accelerator-based ion beam, increasing the beam’s charge and enhancing accelerator performance. Read More »

More Articles