Synopsis

Securing a Wireless Link with Quantum Physics

Physics 13, s164
Researchers shared tamper-proof quantum information across nearly 20 km of open air in an urban environment.
Yao Zheng/Micius Salon

A global internet invulnerable to hackers may be a ways off, but a new experiment brings this goal one step closer. Relying in part on techniques used to sharpen up images from ground-based telescopes, researchers in China have implemented a type of secure quantum communications protocol—known as measurement-device-independent quantum key distribution (MDI-QKD)—across a wireless link connecting two users nearly 20 km apart in a Shanghai neighborhood [1].

Quantum communication channels are susceptible to malicious tampering through imperfections in the measuring devices. MDI-QKD provides perfectly secure communication by having users send light signals to a central node where photon interference is measured. If the interference data agree with expectations, the channel is secure. While other groups have implemented MDI-QKD over optical fibers, no one had yet done so over a wireless channel, where atmospheric turbulence makes it difficult to interfere photons.

To solve this problem, a group led by Jian-Wei Pan, from the University of Science and Technology of China, and colleagues developed a specialized adaptive optics system, in which separate laser beams traveling between users and the central node provided a means of characterizing and correcting for turbulence. The central measurement hub also siphoned off a fraction of incoming photons to check and compensate for timing stability across the link. This setup allowed the team to interfere photons and thus generate secure keys that could be shared between the users.

While many technical challenges remain, the team says that this demonstration is an important milestone toward creating a satellite-based MDI-QKD communications network. In the meantime, the team notes that their setup can also be used to ensure reliable long-distance open-air channels in various quantum experiments.

–Christopher Crockett

Christopher Crockett is a freelance writer based in Arlington, Virginia.

References

  1. Y. Cao et al., “Long-distance free-space measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 125, 260503 (2020).

Subject Areas

Quantum Information

Related Articles

Measuring Qubits with “Time Travel” Protocol
Quantum Information

Measuring Qubits with “Time Travel” Protocol

Quantum sensing can benefit from entanglement protocols that can be interpreted as allowing qubits to go backward in time to choose an optimal initial state. Read More »

Mechanical Coupling to Spin Qubits
Quantum Information

Mechanical Coupling to Spin Qubits

A vibrating nanobeam could be used to share information between distant solid-state spin qubits, potentially allowing use of these qubits in complex computations. Read More »

A Simple Electronic Circuit Manifests a Complex Physical Effect
Atomic and Molecular Physics

A Simple Electronic Circuit Manifests a Complex Physical Effect

Using a single set of measurements of an electronic circuit, researchers have characterized the properties of the topologically protected edge states of a quantum Hall system. Read More »

More Articles