Synopsis

Solitons of All Speeds

Physics 13, s67
A new technique allows researchers to generate solitons with tunable speeds in Bose-Einstein condensates.
A. R. Fritsch et al., Phys. Rev. A (2020)

Shape-maintaining solitary waves are ubiquitous in physics, appearing in large astrophysical systems, such as the Sun’s plasma, and tiny quantum ones, such as Bose-Einstein condensates (BECs). Researchers have long known how to make a soliton in a BEC, but they hadn’t been able to control the wave’s velocity. Now Amilson Fritsch and colleagues, jointly at the National Institute of Standards and Technology, Gaithersburg, and the University of Maryland, demonstrate a way to do exactly that. Using the technique, the team generate near-stationary solitons—a previously unachieved feat—as well as some that travel at up to half the speed of sound.

Solitons in BECs made of repulsively interacting atoms are traditionally “dark,” manifesting as wave-like, reduced-density patterns of atoms. To make these solitons, researchers illuminate half of the BEC with laser light, imprinting a phase difference on the BEC’s wave function. This resulting phase step propagates when the laser is removed. In theory, researchers can create solitons with any velocity by tuning the phase difference, but that requires imprinting an abrupt phase jump. In practice, they normally end up with a smooth, few-micrometer-wide transition, which limits the possible wave velocities.

Fritsch and colleagues solve this problem by tuning the BEC’s density as well as its phase. First, they illuminate the BEC with a narrow laser stripe that reduces the atom density along its width, and then they imprint the phase difference. This two-step process allows them to more accurately generate the wave function of the desired soliton, allowing greater control over its velocity. The team says that before this demonstration, researchers creating solitons were like pitchers who only threw fastballs. Now soliton “pitchers” can throw any ball they want.

This research is published in Physical Review A.

–Katherine Wright

Katherine Wright is a Senior Editor for Physics.


Subject Areas

Atomic and Molecular Physics

Related Articles

How to Move Multiple Ions in Two Dimensions
Quantum Information

How to Move Multiple Ions in Two Dimensions

A scheme that moves electromagnetically trapped ions around a 2D array of sites could aid development of scaled-up ion-based quantum computing. Read More »

Ejected Electron Slows Molecule’s Rotation
Chemical Physics

Ejected Electron Slows Molecule’s Rotation

Sometimes a rotating molecule can transition to a new state only if an electron carries away some of the molecule’s angular momentum. Read More »

Probing the Rotational Doppler Effect with a Single Ion
Atomic and Molecular Physics

Probing the Rotational Doppler Effect with a Single Ion

A light beam with orbital angular momentum can produce the rotational analog of the Doppler effect on an ion. Read More »

More Articles