Synopsis

Simulations Reveal Quantum Tunneling Events in Glass

Physics 13, s74
In a glass, the freedom of atoms to move by quantum tunneling depends on how fast the glass was initially formed.
Office de Tourisme Conques Marcillac

The idea that glass flows like a liquid over long timescales may be a myth, but that doesn’t mean that its atoms are completely frozen. Even at very low temperatures, glasses can shift between similar configurations as a result of quantum tunneling of atoms. Now, Dmytro Khomenko, at Columbia University, and colleagues show by using numerical simulations that the prevalence of such tunneling events depends on the thermal history of the glass. Their findings explain why a glass’s low-temperature properties, like its specific heat, are so sensitive to how the glass was prepared.

Because glass has a disordered structure, its atoms can adopt an infinite number of distinct configurations. At very low temperatures, the energy barriers separating alternative arrangements are too high to overcome. But if two similar configurations have nearly the same energy, atoms can switch places by quantum tunneling. Such two-level systems (TLSs) are present in all glasses formed by rapidly cooling a liquid, explaining why their thermodynamic properties differ from those of crystalline solids. But glasses that are formed layer-by-layer using vapor deposition have still different properties, suggesting they have fewer TLSs.

The study from Khomenko and colleagues puts this idea to the test. They used a recently developed algorithm that can explore the energy landscape of glasses prepared with an unprecedentedly wide range of thermal histories. They found that the density of TLSs is lower in more kinetically stable glasses. And since glasses formed through a slow, layer-by-layer approach are more kinetically stable than those cooled rapidly from a melt, they have fewer TLSs. The researchers also found that, while TLSs typically include just a few atoms, clusters of a hundred or more atoms can sometimes be involved.

This research is published in Physical Review Letters.

–Marric Stephens

Marric Stephens is a Corresponding Editor for Physics based in Bristol, UK.


Subject Areas

Materials Science

Related Articles

Thermal Conductivity Not Too Hot to Handle
Materials Science

Thermal Conductivity Not Too Hot to Handle

A radiometry technique directly measures thermal conductivity in molten metals and confirms the relationship with electrical resistivity. Read More »

Another Twist in the Understanding of Moiré Materials
Materials Science

Another Twist in the Understanding of Moiré Materials

The unexpected observation of an aligned spin polarization in certain twisted semiconductor bilayers calls for improved models of these systems. Read More »

Testing a New Solar Sandwich
Energy Research

Testing a New Solar Sandwich

By combining the world’s oldest photovoltaic material with today’s most used one, researchers have taken a step toward next-generation solar devices. Read More »

More Articles