Measuring Higher Dimensional “Qudits” for Computation

Physics 14, s34
With a technique called self-guided tomography, researchers accurately measure the states of qudits—quantum systems like qubits but with more than two dimensions. 
M. Rambach/University of Queensland

In classical computing, a bit (binary digit) has two dimensions by definition. Quantum computers employ qubits, the classical bit’s quantum equivalent, but could also use qudits, quantum systems with d potential states or dimensions. Markus Rambach of the University of Queensland in Australia and colleagues have now brought such an approach a step closer to reality by showing that a particular technique for measuring quantum states works for higher-dimensional systems than previously tested [1].

To use qudits to their full potential, researchers must be able to create them, control them, and measure their states. States of qudits are measured using a class of techniques called quantum state tomography, but the measurements grow more challenging as the number of dimensions in a system increases. One approach, called self-guided tomography, might allow high accuracy and precision with fewer measurements compared with other quantum tomographic techniques. However, self-guided tomography has so far only been tested on low-dimensional systems, such as a system of two qubits, which has a total number of dimensions d=4.

Rambach and colleagues tested self-guided tomography on pure-state qudits—states that can be written as single vectors in a complex Hilbert space—with 3, 5, and 20 dimensions. They found that the technique is effective for such high-dimensional systems, achieving measurement fidelities of over 99% for all three cases. Though self-guided tomography was originally proposed for measuring pure states, the researchers extended the method to deal with mixed states, demonstrating measurement fidelities of about 95% or higher for mixed-state qudits of three dimensions. Such high-fidelity measurements will likely be necessary to read the mixed-state outputs expected from quantum computers based on high-dimensional qudits

–Erika K. Carlson

Erika K. Carlson is a Corresponding Editor for Physics based in New York City.


  1. M. Rambach et al., “Robust and efficient high-dimensional quantum state tomography,” Phys. Rev. Lett. 126, 100402 (2021).

Subject Areas

Quantum PhysicsQuantum Information

Related Articles

Controlling Single Photons with Rydberg Superatoms
Atomic and Molecular Physics

Controlling Single Photons with Rydberg Superatoms

New schemes based on Rydberg superatoms placed in optical cavities can be used to manipulate single photons with high efficiency. Read More »

Parametric Amplification for Silicon Quantum Devices
Quantum Information

Parametric Amplification for Silicon Quantum Devices

A new design based on the quantum capacitance of a silicon quantum dot could enable scalable, high-fidelity qubit readout. Read More »

A New Option for Neutral-Atom Quantum Computing
Atomic and Molecular Physics

A New Option for Neutral-Atom Quantum Computing

Two independent teams show that neutral ytterbium-171 atoms can be trapped and used for quantum information processing, bringing quantum computers based on this platform a step closer to reality.    Read More »

More Articles