Synopsis

Cooler Atoms for Better Atomic Clocks

Physics 15, s126
Researchers have cooled ytterbium atoms to a few tens of nanokelvin, which might usher in the next generation of optical atomic clocks.
Xiaogang Zhang/NIST

Over the last decade, improvements in optical atomic clocks have repeatedly led to devices that have broken records for their precision (see Viewpoint: A Boost in Precision for Optical Atomic Clocks). To achieve even better performance, physicists must find a way to cool the atoms in these clocks to lower temperatures, which would allow them to use shallower atom traps and reduce measurement uncertainty. Tackling this challenge, Xiaogang Zhang and colleagues at the National Institute of Standards and Technology, Colorado, have cooled a gas of ytterbium atoms to a record low temperature of a few tens of nanokelvin [1]. As well as enabling the next generation of optical atomic clocks, the researchers say that their technique could be used to cool atoms in neutral-atom quantum computers.

Divalent atoms such as ytterbium are especially suited to precision metrology, as their lack of net electronic spin makes them less sensitive than other species to environmental noise. These atoms can be cooled to the necessary sub-µK temperatures in several ways, but not all techniques are compatible with the requirements of high-precision clocks. For example, evaporative cooling, in which the most energetic atoms are removed, is time-consuming and depletes the atoms. Meanwhile, resolved sideband cooling chills the motion of the atoms only along the axis of the 1D optical trap, leaving their off-axis motion unaffected.

Zhang and colleagues cool their atoms using a laser tuned to ytterbium’s so-called clock transition, whose extremely narrow linewidth means that the atom can theoretically be cooled to below 10 nK. They demonstrate that the precision of a clock employing a shallow lattice trap enabled by such a temperature would not be limited by atoms tunneling between adjacent lattice sites, potentially allowing a measurement uncertainty below 10-19.

–Marric Stephens

Marric Stephens is a Corresponding Editor for Physics Magazine based in Bristol, UK.

References

  1. X. Zhang et al., “Subrecoil clock-transition laser cooling enabling shallow optical lattice clocks,” Phys. Rev. Lett. 129, 113202 (2022).

Subject Areas

OpticsAtomic and Molecular Physics

Related Articles

Erbium Atoms in an Optical Tweezer Array
Atomic and Molecular Physics

Erbium Atoms in an Optical Tweezer Array

Erbium and similar elements provide a wide range of electronic “handles” for manipulating atoms in many-body quantum experiments. Read More »

Chiral Response of Achiral Meta-Atoms
Condensed Matter Physics

Chiral Response of Achiral Meta-Atoms

Contrary to conventional wisdom, a lattice of engineered nanoparticles called meta-atoms can have a chiral optical response even when each meta-atom is not chiral. Read More »

Delay Detected in Photon Generation
Optics

Delay Detected in Photon Generation

The observation of a previously unseen photon delay in the production of quantum light has implications for the development of quantum technologies. Read More »

More Articles