A Jiggling Ultracold Atomic Gas Simulates Spin Dynamics

Physics 15, s132
Researchers produce analogues of hard-to-study quantum phenomena in a gas of strontium atoms near absolute zero.
M. Hasan et al. [1]

Recently, researchers have begun using ultracold atomic gases to simulate phenomena that are difficult to study in their natural environments. Using electromagnetic fields, for example, they can orchestrate interatomic interactions that are analogous to interactions in condensed-matter systems, which they can then study with greater experimental control than the real examples allow. Now David Wilkowski of Nanyang Technological University in Singapore and colleagues use an ultracold atomic gas to simulate a condensed-matter system’s spin dynamics [1].

Wilkowski’s team cools a gas of strontium-87 atoms to 30 nK. Then, using three convergent laser beams, they drive the gas through various transitions until the atoms populate two so-called dark states, in which quantum mechanics forbids the atoms from undergoing spontaneous emission.

The relationship between the two dark states parallels the relationship between opposite quantum spin states: as particles with different spins move differently in a magnetic field, so atoms in different dark states move differently in the laser field. As the atoms collectively evolve between different superpositions of these dark states, their interaction with the field induces a “jiggling” motion of their center of mass. This interaction reproduces the phenomenon of spin-orbit coupling, with the dark state representing spin and the atoms’ motion representing orbital angular momentum. This analogy with spin systems goes further: in the experiment, the direction of the gas’s jiggling motion is perpendicular to its average momentum—a velocity-momentum relationship that parallels the spin Hall effect in condensed-matter systems, in which a charge current induces a perpendicular spin current. Next, the researchers plan to use more complex interactions between atoms and laser fields to mimic high-energy particle systems.

–Sophia Chen

Sophia Chen is a freelance science writer based in Columbus, Ohio.


  1. M. Hasan et al., “Wave packet dynamics in synthetic non-Abelian gauge fields,” Phys. Rev. Lett. 129, 130402 (2022).

Subject Areas

Atomic and Molecular PhysicsMagnetism

Related Articles

Midcircuit Operations in Atomic Arrays
Atomic and Molecular Physics

Midcircuit Operations in Atomic Arrays

Three research groups have exploited the nuclear spins of ytterbium-171 to manipulate qubits before they are read out—an approach that could lead to efficient error-correction schemes for trapped-atom computing platforms. Read More »

Seeking a Quantum Hall Effect for Light

Seeking a Quantum Hall Effect for Light

Light confined to an accelerating optical cavity could display a photonic counterpart of the electronic quantum Hall effect. Read More »

It’s a Trap—for Lanthanides
Atomic and Molecular Physics

It’s a Trap—for Lanthanides

Trapping and imaging single dysprosium atoms extends the utility of optical tweezer arrays to electronically complex species, opening the door to new quantum physics studies. Read More »

More Articles