Synopsis

A Jiggling Ultracold Atomic Gas Simulates Spin Dynamics

Physics 15, s132
Researchers produce analogues of hard-to-study quantum phenomena in a gas of strontium atoms near absolute zero.
M. Hasan et al. [1]

Recently, researchers have begun using ultracold atomic gases to simulate phenomena that are difficult to study in their natural environments. Using electromagnetic fields, for example, they can orchestrate interatomic interactions that are analogous to interactions in condensed-matter systems, which they can then study with greater experimental control than the real examples allow. Now David Wilkowski of Nanyang Technological University in Singapore and colleagues use an ultracold atomic gas to simulate a condensed-matter system’s spin dynamics [1].

Wilkowski’s team cools a gas of strontium-87 atoms to 30 nK. Then, using three convergent laser beams, they drive the gas through various transitions until the atoms populate two so-called dark states, in which quantum mechanics forbids the atoms from undergoing spontaneous emission.

The relationship between the two dark states parallels the relationship between opposite quantum spin states: as particles with different spins move differently in a magnetic field, so atoms in different dark states move differently in the laser field. As the atoms collectively evolve between different superpositions of these dark states, their interaction with the field induces a “jiggling” motion of their center of mass. This interaction reproduces the phenomenon of spin-orbit coupling, with the dark state representing spin and the atoms’ motion representing orbital angular momentum. This analogy with spin systems goes further: in the experiment, the direction of the gas’s jiggling motion is perpendicular to its average momentum—a velocity-momentum relationship that parallels the spin Hall effect in condensed-matter systems, in which a charge current induces a perpendicular spin current. Next, the researchers plan to use more complex interactions between atoms and laser fields to mimic high-energy particle systems.

–Sophia Chen

Sophia Chen is a freelance science writer based in Columbus, Ohio.

References

  1. M. Hasan et al., “Wave packet dynamics in synthetic non-Abelian gauge fields,” Phys. Rev. Lett. 129, 130402 (2022).

Subject Areas

Atomic and Molecular PhysicsMagnetism

Related Articles

Microwaves Can Suppress Chemical Reactions
Chemical Physics

Microwaves Can Suppress Chemical Reactions

The heating effect of microwaves has long been used to accelerate reactions. A new experiment shows that microwaves can also excite molecules into a less reactive state. Read More »

Gauging the Temperature Sensitivity of a Nuclear Clock
Atomic and Molecular Physics

Gauging the Temperature Sensitivity of a Nuclear Clock

Researchers have characterized the temperature-induced frequency shifts of a thorium-229 nuclear transition—an important step in establishing thorium clocks as next-generation frequency standards. Read More »

Altermagnets That Turn On and Off
Condensed Matter Physics

Altermagnets That Turn On and Off

Researchers have proposed methods to tune the properties of altermagnets, a step toward practical applications for this new form of magnet. Read More »

More Articles