Synopsis

Microscopic Reversibility Goes Quantum

Physics 15, s141
A fundamental principle in statistical mechanics called microscopic reversibility has been extended to the quantum world.  
M. Bellini et al. [1]

The second law of thermodynamics states that the entropy of an isolated system tends to increase. But statistical mechanics shows that transient reductions in entropy can occur with a tiny probability. Central to the theorems that describe these fluctuations is microscopic reversibility—the idea that the probability of a system taking a specific trajectory through phase space is related to the probability of it taking the time-reversed version of that trajectory. Now Hyukjoon Kwon at the Korea Institute for Advanced Study and his colleagues have demonstrated a quantum version of this principle [1].

The concept of microscopic reversibility must be adjusted when entering the quantum realm because of a key difference between classical and quantum phase spaces. Namely, the uncertainty principle prevents the position and momentum of quantum systems from being measured precisely at the same time. Additionally, the phase-space trajectories of such systems are affected by quantum coherence. Taking these factors into account, Kwon and colleagues considered a quantum system interacting with a thermal bath and derived a relation between the probabilities for a phase-space trajectory and its time-reversed version.

The researchers then experimentally demonstrated quantum microscopic reversibility using a simple optical setup in which laser light was mixed with the light from a thermal bath. They found that the probability relation they derived accurately predicted their experimental results and that quantum effects were important only when the temperature of the thermal bath was low. By raising this temperature, the team observed a transition from quantum to classical microscopic reversibility. In future work, the researchers hope to test their probability relation for nonequilibrium processes in many-body quantum systems.

–Ryan Wilkinson

Ryan Wilkinson is a Corresponding Editor for Physics Magazine based in Durham, UK.

References

  1. M. Bellini et al., “Demonstrating quantum microscopic reversibility using coherent states of light,” Phys. Rev. Lett. 129, 170604 (2022).

Subject Areas

Quantum PhysicsStatistical Physics

Related Articles

Gravitational Versions of Quantum Experiments
Quantum Physics

Gravitational Versions of Quantum Experiments

Measuring gravitational analogues of quantum phenomena could lead to high-precision measurement of gravitational forces, according to a theoretical proposal. Read More »

Simulating Superconductivity in Optical Lattices
Atomic and Molecular Physics

Simulating Superconductivity in Optical Lattices

Researchers have devised a way to use atoms in optical lattices to model high-temperature superconductors, whose behavior is not yet fully understood. Read More »

Spin Control in a Levitating Diamond
Magnetism

Spin Control in a Levitating Diamond

By manipulating and detecting nuclear spins in a tiny floating diamond, scientists have reported a record-long spin coherence time for a levitated system. Read More »

More Articles