Synopsis

More Versatile Quantum Sensors

Physics 15, s82
Quantum sensors can now detect signals of arbitrary frequencies thanks to a quantum version of frequency mixing—a widely used technique in electronics.
G. Wang et al. [1]

Quantum sensors use quantum phenomena, such as coherence and entanglement, to measure signals, such as electric and magnetic fields. These sensors offer high sensitivity and spatial resolution but can only detect fields of specific frequencies. Guoqing Wang at the Massachusetts Institute of Technology and his colleagues have now demonstrated a method that allows existing quantum sensors to measure arbitrary-frequency fields [1]. The approach extends the capabilities of these devices and could find applications beyond quantum sensing.

One strategy to enable a quantum sensor to measure an arbitrary-frequency field is to convert the field’s frequency to one that is accessible to the sensor. Such a conversion can be achieved by combining the signal field with a bias field using an electrical circuit known as a frequency mixer. But this circuit can reduce the sensor’s spatial resolution. Wang and his colleagues avoided this problem by instead using a qubit in the sensor to perform a quantum analog of frequency mixing. When a bias field is applied to the qubit, the qubit converts the signal field’s frequency to an accessible frequency. The signal field can then be analyzed using well-established sensing techniques.

The new approach can also distinguish the transverse and longitudinal components of a signal field, something the team demonstrated using a quantum sensor based on solid-state spins and a 150-MHz magnetic field. The researchers say that their method might also have uses in other contexts—from quantum computing to quantum communication.

–Ryan Wilkinson

Ryan Wilkinson is a freelance science editor and writer based in Durham, UK.

References

  1. G. Wang et al., “Sensing of arbitrary-frequency fields using a quantum mixer,” Phys. Rev. X 12, 021061 (2022).

Subject Areas

Quantum PhysicsQuantum Information

Related Articles

Hearing the Quantum Difference
Quantum Physics

Hearing the Quantum Difference

At very low volume, a quantum optical microphone performs better than a classical device, and humans can hear the difference. Read More »

Pink Noise as a Probe of Quantum Transport
Quantum Physics

Pink Noise as a Probe of Quantum Transport

Measurements of so-called flicker noise can shed light on quantum effects that govern charge transport in nanoscale conductors. Read More »

New Class of Atom Cooled to Near Absolute Zero
Quantum Physics

New Class of Atom Cooled to Near Absolute Zero

Researchers have cooled indium atoms to a temperature close to 1 mK, making indium the first group-III atom to be made ultracold. Read More »

More Articles