Synopsis

“Gunwale Bobbing” Explained

Physics 15, s97
Researchers uncover the hydrodynamics behind a long-known paddleboarding and canoeing trick.
G. P. Benham et al. [1]

If you find yourself up a creek without a paddle, bear in mind an alternative propulsion method: “gunwale bobbing.” This trick, in which a vessel is driven by bouncing up and down at one end, has long been known to paddleboarders and canoeists, but has received little attention from physicists. Now, Graham Benham at the University of Oxford, UK, and his colleagues have derived the first hydrodynamical model of the technique [1]. They say that their model could help to optimize the performance of competitive rowers.

Benham’s colleague, Jerome Neufeld of the University of Cambridge, UK, was inspired to investigate gunwale bobbing when on a lakeside vacation. He noticed that a paddleboard moving via this method resembled a droplet “walking” across the surface of a liquid, which can happen when the droplet interacts with self-generated waves (see Focus: Stop and Go Droplets). The team’s model shows that a vessel can also cross a body of water using waves created when its two ends pitch up and down. In a symmetric system, these waves cause the vessel to oscillate back and forth with no net motion. But in an asymmetric system, such as that created when a person imparts a vertical displacement, or a “heave,” out of phase with the pitch of one end of the vessel, the vehicle gains a net thrust.

Previously, researchers identified parallels between the walking droplets that inspired Benham and his colleagues and an early interpretation of quantum mechanics known as pilot-wave theory. Benham says he wonders whether those links also extend to gunwale bobbing. Exploring that idea will require a large quantity of experimental data, necessitating further lakeside vacations, he says.

–Marric Stephens

Marric Stephens is a Corresponding Editor for Physics Magazine based in Bristol, UK.

References

  1. G. P. Benham et al., “Gunwale bobbing,” Phys. Rev. Fluids 7, 074804 (2022).

Subject Areas

Fluid Dynamics

Related Articles

Liquid Metal Experiment Mimics Accretion Disks
Astrophysics

Liquid Metal Experiment Mimics Accretion Disks

Using a magnetically stirred liquid metal, researchers have reproduced a key feature of astrophysical accretion disks: a turbulence-based transfer of angular momentum. Read More »

Turbulence-Surfing Plankton Can Double Their Speed
Fluid Dynamics

Turbulence-Surfing Plankton Can Double Their Speed

Simulations indicate that plankton can gain quicker access to food by riding ascending turbulent ocean currents. Read More »

Effectively Mixing Two Fluids
Fluid Dynamics

Effectively Mixing Two Fluids

Want to mix two fluids? Researchers have developed a path to optimize the stirrer shape and velocity to give the best outcome.   Read More »

More Articles