Synopsis

The Search for WIMPs Continues

Physics 16, s106
Two mammoth underground detectors have delivered more stringent upper limits on how strongly a putative dark matter candidate interacts with normal matter.
Lawrence Berkeley National Laboratory

Among the hypothetical particles proposed to explain dark matter are weakly interacting massive particles (WIMPs). According to models, WIMPs and their antiparticles fell out of thermal equilibrium soon after the big bang and ceased being spontaneously produced. The fraction that survived self-annihilation lived on. Two teams, LUX ZEPLIN and XENONnT, have just reported the first results of their searches for WIMPs whose masses exceed the proton’s by a factor of 10 and more, a range that’s consistent with models of cosmic evolution [1, 2]. Neither team recorded a detection. However, their constraints in their overlapping mass ranges are the most stringent yet.

The LUX ZEPLIN and XENONnT experiments both consist of several tons of liquid xenon contained in a tank and monitored by two arrays of photomultiplier tubes. These arrays record the characteristic double light flash of WIMPs striking xenon atoms. The ratio of the two flashes would be different for cosmic rays, muons, or other background particles. To reduce background rates, LUX ZEPLIN and XENONnT are located in deep underground caverns.

WIMPs come in several varieties arising from the theories that begat them. The new limits from LUX ZEPLIN and XENONnT do not eliminate any of the popular varieties. However, the two experiments have years more to run. Already, the upper limit on the WIMP–nucleon interaction cross section is one tenth that of the neutrino–nucleon equivalent.

–Charles Day

Charles Day is a Senior Editor for Physics Magazine.

References

  1. E. Aprile et al. (XENON Collaboration), “First dark matter search with nuclear recoils from the XENONnT experiment,” Phys. Rev. Lett. 131, 041003 (2023).
  2. J. Aalbers et al. (LUX-ZEPLIN Collaboration), “First dark matter search results from the LUX-ZEPLIN (LZ) experiment,” Phys. Rev. Lett. 131, 041002 (2023).

Subject Areas

Particles and FieldsAstrophysics

Related Articles

Measuring the Spectrum of High-Energy Cosmic-Ray Electrons
Particles and Fields

Measuring the Spectrum of High-Energy Cosmic-Ray Electrons

A new analysis of more than a decade’s worth of observations extends the spectrum of cosmic-ray electrons to unprecedented high energies. Read More »

Sharpening the <i>B</i>-Meson Anomalies
Particles and Fields

Sharpening the B-Meson Anomalies

A new analysis of B-meson decays strongly hints that they harbor physics beyond the standard model. Read More »

Dark Matter at Cosmic Dawn
Cosmology

Dark Matter at Cosmic Dawn

Low-frequency radio observations could allow researchers to distinguish among several dark matter models, thanks to dark matter’s influence on the early Universe. Read More »

More Articles