Synopsis

Milestone for Optical-Lattice Quantum Computer

Physics 16, s122
Quantum mechanically entangled groups of eight and ten ultracold atoms provide a critical demonstration for optical-lattice-based quantum processing.
W.-Y. Zhang/University of Science and Technology of China

Ultracold atoms trapped in an optical lattice—a periodic array of laser-produced trapping sites—could potentially be used to perform quantum computations and should be scalable, according to experts. But until now researchers had failed to accomplish a critical step: quantum mechanically entangling more than two atoms at a time. Now Jian-Wei Pan of the University of Science and Technology of China and his colleagues have entangled one-dimensional chains of ten atoms and two-dimensional groups of eight atoms with high reliability [1]. The team has also demonstrated control and imaging of the states of the atoms with single-atom resolution [1]. The results show that several of the required building blocks needed for optical-lattice-based quantum processors are now practical.

Previously, Pan and his colleagues have entangled pairs of atoms in a system containing over 2000 rubidium atoms [2]. In that experiment they used a two-dimensional lattice that had two trapping locations at each lattice site—a so-called superlattice. To entangle larger numbers of atoms, the researchers again used the superlattice. They also used additional technologies: a so-called quantum gas microscope and three digital micromirror devices, spatial light modulators with high spatial precision. These tools provided the team with the single-atom resolution needed to create and then verify the simultaneous entanglement of groups of up to ten atoms within the set of 100 or so atoms involved in these experiments. Single-atom resolution will ultimately be necessary for quantum computers, so that devices can manipulate individual qubits and read their values.

–David Ehrenstein

David Ehrenstein is a Senior Editor for Physics Magazine.

References

  1. W.-Y. Zhang et al., “Scalable multipartite entanglement created by spin exchange in an optical lattice,” Phys. Rev. Lett. 131, 073401 (2023).
  2. H.-N. Dai et al., “Generation and detection of atomic spin entanglement in optical lattices,” Nat. Phys. 12, 783 (2016).

Subject Areas

Atomic and Molecular Physics

Related Articles

Ultracold Fermions Enter the Fractional Quantum Hall Arena
Condensed Matter Physics

Ultracold Fermions Enter the Fractional Quantum Hall Arena

By controlling the motion and interaction of individual atoms in a cold-atom ensemble, researchers have produced a correlated topological state of matter, called a fractional quantum Hall state. Read More »

Simulating Superconductivity in Optical Lattices
Atomic and Molecular Physics

Simulating Superconductivity in Optical Lattices

Researchers have devised a way to use atoms in optical lattices to model high-temperature superconductors, whose behavior is not yet fully understood. Read More »

Laser-Based Tuning of Light–Matter Interactions
Atomic and Molecular Physics

Laser-Based Tuning of Light–Matter Interactions

A new method for controlling the interactions between ultracold atoms and light could advance efforts to simulate complex quantum systems using atom clouds. Read More »

More Articles