Quantum Boost for Magnetic Induction Tomography

Physics 16, s70
Quantum effects improve the performance of magnetic induction tomography—an imaging technique that has promising medical applications.
W. Zheng et al. [1]

Magnetic induction tomography is a contactless, noninvasive method for mapping the electrical and magnetic properties of a material. The technique is used in geophysical surveys and in the nondestructive testing of metallic objects, and it could have various uses in medical imaging, such as for monitoring brain activity. Now Eugene Polzik and his colleagues at the University of Copenhagen in Denmark show that quantum phenomena can increase the sensitivity of magnetic induction tomography [1]. The team’s demonstration is the latest example of quantum-enhanced sensing, which has previously been illustrated in the detection of gravitational waves, for example.

In magnetic induction tomography, the magnetic field generated by a current-carrying coil of wire produces eddy currents in the material being examined. The magnetic field associated with these eddy currents is then detected using another coil or, for better precision, a quantum sensor known as an atomic magnetometer. The properties of the detected field reveal valuable information about the distribution of electrical conductivity and magnetic permeability in the material.

The sensitivity of this imaging method is usually constrained by the so-called standard quantum limit, which is set by a combination of detector quantum noise and “backaction”—an effect of the detector on the field measurement. In a series of experiments, Polzik and his colleagues show that the noise can be reduced and the backaction evaded if they use an atomic magnetometer containing entangled atoms, allowing them to boost the sensitivity of magnetic induction tomography beyond the standard quantum limit. In one demonstration, the researchers find that their quantum-enhanced approach almost doubles the precision of the conventional technique.

–Ryan Wilkinson

Ryan Wilkinson is a Corresponding Editor for Physics Magazine based in Durham, UK.


  1. W. Zheng et al., “Entanglement-enhanced magnetic induction tomography,” Phys. Rev. Lett. 130, 203602 (2023).

Subject Areas

Quantum PhysicsAtomic and Molecular PhysicsOptics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Quantum “Torch” Begins Its Relay
Quantum Physics

Quantum “Torch” Begins Its Relay

A quantum light source is touring European labs in preparation for the 2025 International Year of Quantum Science and Technology. Read More »

Quantum Machine Learning Goes Photonic
Quantum Physics

Quantum Machine Learning Goes Photonic

Measuring a photon’s angular momentum after it passes through optical devices teaches an algorithm to reconstruct the properties of the photon’s initial quantum state. Read More »

More Articles