Synopsis

Squeezing Superconductors

Physics 16, s85
Experiments on a family of cuprate superconductors resolve discrepancies in previous work and elucidate why the critical temperature varies with pressure.  
A. C. Mark et al. [1]

How electrons pair in cuprate superconductors depends, in part, on the crystalline landscape the electrons occupy. That landscape can be altered by applying pressure, which in turn causes the critical temperature (Tc) in some cuprates to rise, fall, and rise again as the pressure grows. But are the changes in Tc due to the atoms being pressed into a new crystalline structure or just being squeezed closer together? Experimental evidence is contradictory. To resolve the question, Alexander Mark of the University of Illinois Chicago and his collaborators performed experiments on the three members of the BSCCO family of cuprates [1]. They showed that the pressure-induced shifts in Tc coincide with changes in how the materials compress, which in turn reflect changes in electronic structure.

The high-pressure experiments on the superconductors were done in diamond anvil cells. The possibility of conflicting results arises from how the crystals respond to inhomogeneities in the compression environment. If the crystal experiences shear, the pressure–Tc relationship can be obscured. To remove this effect, Mark and his collaborators suspended the BSCCO crystals in neon inside the sample chambers of the anvil cells. They used x-ray diffraction to track structural changes as they increased the pressure.

The researchers found that the BSCCO crystals retained their orthorhombic structure up to the highest pressure they applied, 155 gigapascals. They also found that a standard equation for a crystal’s volume as a function of pressure worked only if they split their data into different regimes above and below a critical pressure. What’s more, the critical pressures tracked the inflection points in the pressure dependence of Tc associated with changes in electronic structure. Identifying the nature of these changes could yield insights into practical ways of raising Tc.

–Charles Day

Charles Day is a Senior Editor for Physics Magazine.

References

  1. A. C. Mark et al., “Structure and equation of state of Bi2Sr2Can−1CunO2n+4+𝛿 from x-ray diffraction to megabar pressures,” Phys. Rev. Mater. 7, 064803 (2023).

Subject Areas

SuperconductivityCondensed Matter Physics

Related Articles

Toward a Second Law for Living Systems
Biological Physics

Toward a Second Law for Living Systems

A new theory related to the second law of thermodynamics describes the motion of active biological systems ranging from migrating cells to traveling birds. Read More »

Mapping Spin Waves with a Strobe Light
Condensed Matter Physics

Mapping Spin Waves with a Strobe Light

A method for imaging spin waves in magnetic materials uses flash-like intensity variations in a laser beam to capture the wave motion at specific moments in time. Read More »

Superconductivity Experts Speak Up for Hydride Research
Superconductivity

Superconductivity Experts Speak Up for Hydride Research

An independent analysis of data on the hotly debated superconductivity of certain hydrogen-rich compounds, or hydrides, concludes that the phenomenon is likely genuine. Read More »

More Articles