Synopsis

A New Nonlinearity for Superconducting Circuits

Physics 17, s107
Researchers have isolated a high-order term in the behavior of a Josephson junction, which could lead to longer-lived superconducting qubits.
S. Messelot et al. [1]

Qubits based on superconducting circuits come in various forms, but one thing they have in common is their reliance on Josephson junctions, which give a circuit the nonlinearity necessary to generate qubit states. Simon Messelot from CNRS Grenoble, France, and his colleagues have now built a superconducting circuit whose nonlinear response differs from that of conventional Josephson-junction-based circuits [1]. The circuit design could lead to superconducting qubits with much longer coherence times.

A conventional Josephson junction is a short constriction or insulating section within a superconducting circuit. Current flows across the junction by quantum tunneling, and the magnitude of this current is related to the phase difference 𝜑 between the wave functions of the superconductor on either side of the junction. In traditional junctions, the current-phase relation (CPR) is nonlinear based on a sin( 𝜑) dependence. But in recent years, researchers have developed junctions based on semiconductors and two-dimensional materials whose CPR can include higher-order terms such as sin( 2𝜑). Nevertheless, the behavior is typically dominated by the lowest order sin( 𝜑) term.

Messelot and colleagues fabricated a superconducting circuit incorporating three graphene-based Josephson junctions. These junctions were arranged to form two superconducting quantum interference devices (SQUIDs), which are circuits in which the junctions’ 𝜑 values are sensitive to magnetic fields. By applying a magnetic field and controlling the voltage across every junction, the team suppressed the sin( 𝜑) term in one of the SQUIDs, causing its CPR to be dominated by sin( 2𝜑).

A superconducting circuit governed by sin( 2𝜑) has a more complex energy landscape, with two energy minima. A qubit whose states are defined by these minima would be longer lived and easier to manipulate than a conventional superconducting qubit.

–Marric Stephens

Marric Stephens is a Corresponding Editor for Physics Magazine based in Bristol, UK.

References

  1. S. Messelot et al., “Direct measurement of a sin(2𝜑) current phase relation in a graphene superconducting quantum interference device,” Phys. Rev. Lett. 133, 106001 (2024).

Subject Areas

Quantum PhysicsSuperconductivity

Related Articles

Spin Control in a Levitating Diamond
Magnetism

Spin Control in a Levitating Diamond

By manipulating and detecting nuclear spins in a tiny floating diamond, scientists have reported a record-long spin coherence time for a levitated system. Read More »

Delay Detected in Photon Generation
Optics

Delay Detected in Photon Generation

The observation of a previously unseen photon delay in the production of quantum light has implications for the development of quantum technologies. Read More »

Quantifying the Background Radiation Hitting Superconducting Qubits
Quantum Physics

Quantifying the Background Radiation Hitting Superconducting Qubits

Researchers have characterized the naturally occurring background radiation hitting a typical quantum circuit—a result that might help with the engineering of devices that are less vulnerable to radiation-induced decoherence. Read More »

More Articles