Synopsis

Heavy Element Formation Limited in Failed Supernovae

Physics 17, s122
Despite its intensity, the gravitational collapse of certain massive stars does not produce an abundance of heavy elements.
NASA/SkyWorks Digital

About half of the elements heavier than iron are made by the r, or rapid, process. A nucleus captures neutrons so quickly that radioactive decay is forestalled until the neutron-heavy nucleus finally emits electrons and neutrinos and settles at a new, higher atomic number. Besides normal supernovae and neutron-star mergers, the r process is also suspected to occur in so-called collapsars. These are rapidly rotating massive stars that collapse without producing a regular supernova once they exhaust their fuel. However, simulations by Coleman Dean and Rodrigo Fernández of the University of Alberta, Canada, have now undermined that r-process conjecture [1].

A collapsar’s progenitor is massive enough that it forms a black hole. To shed its prodigious angular momentum, it also forms a thick, unstable accretion disk. During the collapse, nuclei in the stellar envelope break apart, and their protons combine with electrons in the envelope to produce neutrons and neutrinos in large numbers. These neutrons could turn the disk into a favorable, if fleeting, site for the r process to forge and disperse heavy elements—provided that this neutron-rich matter can be ejected.

In their simulations, Dean and Fernández included many effects, such as the nuclear processes occurring in a collapsar, the black hole’s gravity, and the disk’s dynamical response to the neutrino emission. Only one simulation—with almost implausibly low disk viscosity—produced significant quantities of light r-process elements. In all cases, most neutron-rich matter was accreted by the black hole, with the stellar envelope being expelled only after neutrino and neutron production ceased. The researchers note that advanced modeling will be needed to see if one disregarded effect, a strong magnetic field, could fully activate the r process.

–Charles Day

Charles Day is a Senior Editor for Physics Magazine.

References

  1. C. Dean and R. Fernández, “Collapsar disk outflows: Heavy element production,” Phys. Rev. D 110, 083024 (2024).

Subject Areas

AstrophysicsFluid DynamicsNuclear Physics

Related Articles

Short-Lived Superheavy Nucleus Uncovered
Computational Physics

Short-Lived Superheavy Nucleus Uncovered

The discovery of an isotope, rutherfordium-252, whose ground state forestalls fission for just 60 nanoseconds, could help theorists understand the cosmic synthesis of superheavy elements. Read More »

Drilling into Neutron Stars with Computers
Nuclear Physics

Drilling into Neutron Stars with Computers

Simulations of neutron stars provide new bounds on their properties, such as their internal pressure and their maximum mass. Read More »

Eating Without Limit: Ravenous Object May Explain Early Black Hole Growth
Astrophysics

Eating Without Limit: Ravenous Object May Explain Early Black Hole Growth

A black hole accreting mass above the so-called Eddington limit may explain how supermassive black holes reach billions of times the mass of our Sun. Read More »

More Articles