Synopsis

Fluxonium Qubits Under Control

Physics 17, s55
By coupling two fluxonium qubits through an inductive circuit rather than through a capacitor, researchers have realized a high-fidelity two-qubit gate.
H. Zhang et al. [1]

The leading technology for quantum computers is based on superconducting qubits called transmons. Ease of fabrication has been a key advantage of transmons over their main superconducting competitors, fluxonium qubits, which consist of loops of many nanoscale Josephson junctions. Recent advances in nanofabrication have made fluxonium qubits easier to engineer, however, triggering a new wave of interest in this architecture (see Viewpoint: Fluxonium Steps up to the Plate). Now University of Chicago physicists Helin Zhang and Chunyang Ding and their collaborators have realized a tunable interaction between two fluxonium qubits, which allowed them to demonstrate a two-qubit gate with a fidelity (a reliability metric for a quantum device) exceeding 99.9% [1]. The result is an important step toward building large-scale fluxonium-based quantum computers, the researchers say.

A fluxonium qubit encodes information in the current flowing in the loop of Josephson junctions. Typically, interactions that couple adjacent qubits are mediated by electric fields generated by capacitors integrated into the circuit. Zhang, Ding, and colleagues instead used an inductive coupler consisting of a smaller loop of Josephson junctions placed between two qubits. The strength of the inductive coupling—an order of magnitude larger than that of capacitive coupling—made this architecture capable of two-gate operations with a fidelity rivaling that of any other superconducting qubit technology. The team also demonstrated that the coupling could be turned off with a microwave signal, allowing independent control of each of the qubits.

Ding says that the Josephson-junction-based coupler demands close proximity between the qubits, causing unwanted crosstalk that would make it hard to scale up the architecture to large numbers of qubits. But the proximity requirements could be loosened with alternative inductive-coupling approaches, he says.

–Marric Stephens

Marric Stephens is a Corresponding Editor for Physics Magazine based in Bristol, UK.

References

  1. H. Zhang et al., “Tunable inductive coupler for high-fidelity gates between fluxonium qubits,” PRX Quantum 5, 020326 (2024).

Subject Areas

Quantum InformationQuantum PhysicsSuperconductivity

Related Articles

Spin Control in a Levitating Diamond
Magnetism

Spin Control in a Levitating Diamond

By manipulating and detecting nuclear spins in a tiny floating diamond, scientists have reported a record-long spin coherence time for a levitated system. Read More »

Delay Detected in Photon Generation
Optics

Delay Detected in Photon Generation

The observation of a previously unseen photon delay in the production of quantum light has implications for the development of quantum technologies. Read More »

Quantifying the Background Radiation Hitting Superconducting Qubits
Quantum Physics

Quantifying the Background Radiation Hitting Superconducting Qubits

Researchers have characterized the naturally occurring background radiation hitting a typical quantum circuit—a result that might help with the engineering of devices that are less vulnerable to radiation-induced decoherence. Read More »

More Articles