Synopsis

A Better Way to Charge a Quantum Battery

Physics 17, s58
Coupling the charger and battery to a common reservoir induces a direct flow of energy into the battery.
Figure Credit: S. Barzanjeh/University of Calgary; B. Ahmadi/University of Gdansk

Like any other battery, a quantum battery is a device that stores energy. But unlike its electrochemical counterparts, which are charged by flows of electrons, a quantum battery feeds on photons. Effects such as quantum entanglement and quantum coherence mean that a quantum battery can charge faster as you add more cells (see Viewpoint: Sizing Up the Potential of Quantum Batteries). Shabir Barzanjeh at the University of Calgary, Canada, and his colleagues now propose a charging protocol for a quantum battery that maximizes stored energy while minimizing energy dissipation during charging [1]. The novelty lies in inducing nonreciprocity, an invaluable element in optical and microwave signal processing that allows light to propagate asymmetrically along opposite directions.

A quantum battery charging system could potentially be built using any quantum system that breaks time-reversal symmetry. Barzanjeh’s version couples a charger (which could be realized by a microwave resonator) to a battery (which could be realized by a mechanical oscillator). An external pump supplies photon energy that gets exchanged between the battery and the charger. Unlike most quantum battery designs, the charger and the battery are simultaneously coupled to a shared reservoir. This results in an interference-like phenomenon where coherent coupling between the charger and the battery introduces a nonreciprocal flow within the system. This counteracts dissipative interactions with the battery’s surroundings, improving the energy transfer efficiency.

The researchers calculate a fourfold increase in energy stored in the battery during charging compared to conventional charging. They say that their version will lead to a quantum battery that has a higher capacity than those previously proposed or implemented. Their design works with both optical and microwave photons, making it compatible with superconducting qubits, nanoelectronics, and nanophotonics.

–Rachel Berkowitz

Rachel Berkowitz is a Corresponding Editor for Physics Magazine based in Vancouver, Canada.

References

  1. B. Ahmadi et al., “Nonreciprocal quantum batteries,” Phys. Rev. Lett. 132, 210402 (2024).

Subject Areas

Quantum PhysicsEnergy Research

Related Articles

Spin Control in a Levitating Diamond
Magnetism

Spin Control in a Levitating Diamond

By manipulating and detecting nuclear spins in a tiny floating diamond, scientists have reported a record-long spin coherence time for a levitated system. Read More »

Delay Detected in Photon Generation
Optics

Delay Detected in Photon Generation

The observation of a previously unseen photon delay in the production of quantum light has implications for the development of quantum technologies. Read More »

Quantifying the Background Radiation Hitting Superconducting Qubits
Quantum Physics

Quantifying the Background Radiation Hitting Superconducting Qubits

Researchers have characterized the naturally occurring background radiation hitting a typical quantum circuit—a result that might help with the engineering of devices that are less vulnerable to radiation-induced decoherence. Read More »

More Articles