Synopsis

Long-Standing Quantum Problem Finally Solved

Physics 17, s83
An answer to a decades-old question in the theory of quantum entanglement raises more questions about this quirky phenomenon.
L. M. Iraola/Institute of Mathematical Sciences (ICMAT)

Physicists have a long list of open problems they consider important for advancing the field of quantum information. Problem 5 asks whether a system can exist in its maximally entangled state in a realistic scenario, in which noise is present. Now Julio de Vicente at Carlos III University of Madrid has answered this fundamental quantum question with a definitive “no” [1]. De Vicente says that he hopes his work will “open a new research avenue within entanglement theory.”

From quantum sensors to quantum computers, many technologies require quantum mechanically entangled particles to operate. The properties of such particles are correlated in a way that would not be possible in classical physics. Ideally, for technology applications, these particles should be in the so-called maximally entangled state, one in which all possible measures of entanglement are maximized. Scientists predict that particles can exist in this state in the absence of experimental, environmental, and statistical noise. But it was unclear whether the particles could also exist in a maximally entangled state in real-world scenarios, where noise is unavoidable.

To fill this knowledge gap, de Vicente turned to mathematics. He proved that, if any noise is introduced to a quantum system, it is impossible to simultaneously maximize all entanglement measures of the system, and the system cannot exist in a maximally entangled state. While de Vicente’s finding solves one open problem, he says that it raises many more, including what conditions are required in order to simultaneously maximize multiple entanglement measures of a system.

–Ryan Wilkinson

Ryan Wilkinson is a Corresponding Editor for Physics Magazine based in Durham, UK.

References

  1. J. I. de Vicente, “Maximally entangled mixed states for a fixed spectrum do not always exist,” Phys. Rev. Lett. 133, 050202 (2024).

Subject Areas

Quantum PhysicsQuantum Information

Related Articles

How to Move Multiple Ions in Two Dimensions
Quantum Information

How to Move Multiple Ions in Two Dimensions

A scheme that moves electromagnetically trapped ions around a 2D array of sites could aid development of scaled-up ion-based quantum computing. Read More »

Can Classical Worlds Emerge from Parallel Quantum Universes?
Quantum Information

Can Classical Worlds Emerge from Parallel Quantum Universes?

Simulations deliver hints on how the multiverse produced according to the many-world interpretation of quantum mechanics might be compatible with our stable, classical Universe. Read More »

Qubit Readout Mystery Solved
Quantum Information

Qubit Readout Mystery Solved

Theoretical work provides a long-awaited explanation for why measurements of qubits in superconducting quantum computers are less accurate than expected. Read More »

More Articles