Synopsis

Separating oil from water with magnetic resonance force microscopy

Physics 2, s25
An advance in magnetic resonance force microscopy enhances its chemical sensitivity and opens up the possibility of identifying different organic substances at the nanoscale.
Illustration: Alan Stonebraker

In samples that contain very few spins, random spin flips generate a fluctuating polarization that exceeds the typical thermal, or Boltzmann, polarization. Although the dominance of this statistical polarization would appear to pose a major obstacle to nanoscale magnetic resonance experiments, in fact, it can be harnessed for nuclear spin detection.

In bulk samples, the magnetic resonance signal from an ensemble of one type of nucleus can be enhanced by “cross polarizing” it with an ensemble of another species.  In simple terms, the dipolar coupling between two spin ensembles allows polarization to transfer from one ensemble to another, leaving the fingerprint of a particular species on the other. In a paper appearing in Physical Review Letters, Martino Poggio, now at the Swiss Nanoscience Institute and the University of Basel, and colleagues at IBM Almaden adapt this cross-polarization technique to a system in which statistical fluctuations dominate rather than the Boltzmann polarization.  With magnetic resonance force microscopy (MFRM) they are able to distinguish ensembles of 1H and 13C spins in 13C-enriched stearic acid ( C18H36O2).

Poggio et al. are able to observe the influence of the 13C spins on the 1H spin signal (and vice versa), a result that can, for instance, allow MRFM to distinguish between organic materials and water.  This promises well for materials characterization at the nanoscale, and could eventually be applied to distinguish individual protein components in nanoscale biological structures. – Daniel Ucko


Subject Areas

MagnetismNanophysics

Related Articles

Long-Range Resonances Slow Light in a Photonic Material
Nanophysics

Long-Range Resonances Slow Light in a Photonic Material

Light–matter interactions in certain one-dimensional photonic materials can bring light nearly to a standstill, an effect that researchers show requires consideration of long-range interactions between the material’s components. Read More »

Experimental Evidence for a New Type of Magnetism
Condensed Matter Physics

Experimental Evidence for a New Type of Magnetism

Spectroscopic data suggest that thin films of a certain semiconducting material can exhibit altermagnetism, a new and fundamental form of magnetism. Read More »

Altermagnetism Then and Now
Condensed Matter Physics

Altermagnetism Then and Now

Recent theoretical work has identified the possibility of a new and fundamental form of magnetism. Read More »

More Articles