Synopsis

One relation to rule them all

Physics 3, s109
Data continue to accumulate showing that an important set of universal relations accurately describes the properties of ultracold fermionic gases.
Illustration: Alan Stonebraker

Quantum gases of ultracold fermions offer a versatile way to study phenomena from quark matter to superconductors. In 2008, Shina Tan (then at the University of Washington) published a set of exact universal relations connecting microscopic quantities with thermodynamic variables under a wide range of conditions. Recently, a group at JILA experimentally verified some of the Tan relations in ultracold potassium- 40 [1]. Writing in Physical Review Letters, Eva Kuhnle and colleagues at Swinburne University of Technology in Melbourne, Australia, now add to the picture with their results on lithium- 6.

Kuhnle et al. used Bragg scattering of atoms from a periodic optical potential to verify one of the Tan relations for pair correlations as a function of both the scattering length and probe momentum. This complements the JILA work, which verified a relation between total energy and adiabatic changes in scattering length, and another relation that extends the virial theorem (which expresses total energy in terms of kinetic energy, external potential energy, and interaction energy) to quantum gases. – David Voss

[1] J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Phys. Rev. Lett. 104, 235301 (2010); see also Viewpoint commentary by D. Sheehy, Physics 3, 48 (2010).


Subject Areas

Atomic and Molecular Physics

Related Articles

An Alternative Way to Make an Air Laser
Optics

An Alternative Way to Make an Air Laser

A resonance between energy levels in argon atoms and nitrogen molecules could be used to remotely sense contaminants in air. Read More »

Visualizing Atom Currents in Optical Lattices
Condensed Matter Physics

Visualizing Atom Currents in Optical Lattices

A new manipulation technique could enable the realization of more versatile quantum simulators. Read More »

Reducing Uncertainty in an Optical Lattice Clock
Atomic and Molecular Physics

Reducing Uncertainty in an Optical Lattice Clock

By reducing the effect of systematic errors, researchers have created an atomic clock that sets a new record for precision. Read More »

More Articles