Synopsis

Ups and downs in a BEC

Physics 3, s112
A pulsed laser modulates the atom-atom interaction in a Bose-Einstein condensate on submicron length scales.
Illustration: Courtesy of R. Yamazaki, Kyoto University

Tuning the interatomic interactions in a Bose-Einstein condensate (BEC) has fundamental and applied interest, from the manipulation of ultracold molecules to the quantum simulation of Bose-novae and novel Hubbard models.

Scientists are able to smoothly tune the atomic interaction in a BEC from repulsive to attractive by creating what is called a Feshbach resonance between pairs of atoms. However, these resonances are typically tuned with a magnetic field and therefore affect all of the atoms in the condensate uniformly. Now, writing in Physical Review Letters, Rekishu Yamazaki, Shintaro Taie, Seiji Sugawa, and Yoshiro Takahashi at Kyoto University in Japan have used an optical approach to tune a Feshbach resonance that allows them to spatially modulate both the strength and sign of the interactions within the condensate.

Yamazaki et al. apply a pulsed optical lattice—a standing wave of light created by bouncing a pulsed laser from a mirror—to a condensate of ytterbium atoms. The standing wave, which is tuned to the vicinity of a photoassociation transition that mediates the Feshbach resonance, has a periodicity of 278nm and effectively modulates the interatomic interaction— in some cases from negative to positive—with the same periodicity.

This ability to quickly spatially modulate the scattering length in a BEC on submicron scales could enable a broad class of experiments in nonequilibrium BEC physics. – Manolis Antonoyiannakis


Subject Areas

Atomic and Molecular Physics

Related Articles

Ultracold Fermions Enter the Fractional Quantum Hall Arena
Condensed Matter Physics

Ultracold Fermions Enter the Fractional Quantum Hall Arena

By controlling the motion and interaction of individual atoms in a cold-atom ensemble, researchers have produced a correlated topological state of matter, called a fractional quantum Hall state. Read More »

Simulating Superconductivity in Optical Lattices
Atomic and Molecular Physics

Simulating Superconductivity in Optical Lattices

Researchers have devised a way to use atoms in optical lattices to model high-temperature superconductors, whose behavior is not yet fully understood. Read More »

Laser-Based Tuning of Light–Matter Interactions
Atomic and Molecular Physics

Laser-Based Tuning of Light–Matter Interactions

A new method for controlling the interactions between ultracold atoms and light could advance efforts to simulate complex quantum systems using atom clouds. Read More »

More Articles