Synopsis

Loop, de-loop

Physics 3, s15
Relatively small tension in a DNA strand can have large effects on its ability to control the expression of genes.

When conditions require it, a biological cell can prevent its machinery from reading a section of DNA by creating a loop—like the first loop you make when coiling a rope—just “upstream” from the gene to be suppressed. A repressor protein ties together two points on the DNA to make the loop. Researchers know a lot about the biochemistry of this kind of gene regulation but little about the physics.

Yih-Fan Chen, Joshua N. Milstein, and Jens-Christian Meiners, from the University of Michigan in Ann Arbor, US, have now shown experimentally that a miniscule amount of mechanical tension in the DNA strand can strongly affect the creation of the loop. They find that increasing the tension on the strand from 60 to 183 femtonewtons reduces the likelihood that a loop will form by a factor of ten, but once created, the loop is highly stable over the range of forces they tested.

The team used optical tweezers to tug on an 800-nanometer microsphere attached to one end of the DNA strand while the other end of the strand was stuck to the bottom of the water-filled chamber. The loop-binding protein LacI was in the solution, and the sphere height dropped whenever a DNA loop was created, shortening the free length of the strand.

Given the large effects of subpiconewton tensions, the authors suggest that cells may actively control DNA tension in order to protect the gene regulation process from even larger forces within the cell. Cells might even use tension to help regulate gene expression, they suggest, but there aren’t yet tools to measure such effects in living cells. – David Ehrenstein


Subject Areas

Biological Physics

Related Articles

How Having Extra Chromosome Sets Shapes Evolution
Biological Physics

How Having Extra Chromosome Sets Shapes Evolution

Researchers predict that having extra sets of chromosomes can both speed up and slow down the evolution of an organism, depending on the organism’s “fitness landscape.” Read More »

Biological Magnetic Sensing Comes Close to Quantum Limit
Biological Physics

Biological Magnetic Sensing Comes Close to Quantum Limit

Researchers find that two types of biological magnetic sensor can sense fields close to the quantum limit, a finding that could guide the design of lab-made devices. Read More »

Brain Response Relies on Avalanches
Nonlinear Dynamics

Brain Response Relies on Avalanches

A new model reveals that bursts of neural activity known as critical avalanches underlie the brain’s ability to respond consistently to stimuli. Read More »

More Articles