Synopsis

Wind blowing over an ultracold sea

Physics 3, s177
The interface between two Bose-Einstein condensates may provide new physical insights into fluid dynamics.
Credit: N. Suzuki et al., Phys. Rev. A (2010)

Kelvin-Helmholtz instabilities can occur at the interface between two fluids in relative motion. This happens, for example, when wind blows over the surface of the sea, forming waves, as well as in many similar situations involving immiscible classical fluids. It also occurs in more exotic cases, for instance, at the interface between two superfluids, such as the A and B phases of superfluid helium- 3. On the other hand, if the two fluids are partially miscible and their interface is thick, a different dynamical instability, known as counter-superflow instability, may also arise.

In a paper published in Physical Review A, Naoya Suzuki at the University of Electro-Communications in Tokyo and collaborators, also in Japan, show that gaseous two-component Bose-Einstein condensates may represent an ideal testing ground for textbook concepts of fluid dynamics, because the miscibility and the interface thickness can be tuned by a clever use of Feshbach resonances and external potentials. Their numerical simulations, based on the solution of a nonlinear Schrödinger equation, illustrate how a Kelvin-Helmholtz instability converts into a counter-superflow instability when the interface thickness is continuously increased. The authors propose experiments to test their ideas, which should be within the reach of current technology. – Franco Dalfovo


Subject Areas

Atomic and Molecular PhysicsFluid Dynamics

Related Articles

Charged Droplets Can Hit a Surface Without Splashing
Fluid Dynamics

Charged Droplets Can Hit a Surface Without Splashing

The messy breakup of a liquid droplet that occurs when it hits a surface can be suppressed by giving the droplet an electrical charge. Read More »

Microwaves Can Suppress Chemical Reactions
Chemical Physics

Microwaves Can Suppress Chemical Reactions

The heating effect of microwaves has long been used to accelerate reactions. A new experiment shows that microwaves can also excite molecules into a less reactive state. Read More »

Prizes for Eels, Algae, Leaves, and More
Fluid Dynamics

Prizes for Eels, Algae, Leaves, and More

The winners of the annual “Gallery of Soft Matter” competition included posters and videos depicting wiggling worms, wrinkly leaves, sun-shy algae, flowing solids, and drying fibers. Read More »

More Articles