Synopsis

Wind blowing over an ultracold sea

Physics 3, s177
The interface between two Bose-Einstein condensates may provide new physical insights into fluid dynamics.
Credit: N. Suzuki et al., Phys. Rev. A (2010)

Kelvin-Helmholtz instabilities can occur at the interface between two fluids in relative motion. This happens, for example, when wind blows over the surface of the sea, forming waves, as well as in many similar situations involving immiscible classical fluids. It also occurs in more exotic cases, for instance, at the interface between two superfluids, such as the A and B phases of superfluid helium- 3. On the other hand, if the two fluids are partially miscible and their interface is thick, a different dynamical instability, known as counter-superflow instability, may also arise.

In a paper published in Physical Review A, Naoya Suzuki at the University of Electro-Communications in Tokyo and collaborators, also in Japan, show that gaseous two-component Bose-Einstein condensates may represent an ideal testing ground for textbook concepts of fluid dynamics, because the miscibility and the interface thickness can be tuned by a clever use of Feshbach resonances and external potentials. Their numerical simulations, based on the solution of a nonlinear Schrödinger equation, illustrate how a Kelvin-Helmholtz instability converts into a counter-superflow instability when the interface thickness is continuously increased. The authors propose experiments to test their ideas, which should be within the reach of current technology. – Franco Dalfovo


Subject Areas

Atomic and Molecular PhysicsFluid Dynamics

Related Articles

Iterative Process Builds Near-Perfect Atom Array
Quantum Physics

Iterative Process Builds Near-Perfect Atom Array

Researchers show that atoms that escape from an atom array can be replaced on the fly—an important step toward operating a large-scale neutral-atom quantum computer. Read More »

Ocean Currents Resolved on Regional Length Scales
Computational Physics

Ocean Currents Resolved on Regional Length Scales

Using a detailed simulation, researchers reveal how climate change will affect the regional dynamics of the conveyor-belt-like circulation of water through the Atlantic Ocean. Read More »

A Slight Curvature Gives Pebbles an Impacting Edge
Fluid Dynamics

A Slight Curvature Gives Pebbles an Impacting Edge

Pebbles that are slightly curved—rather than completely flat—exert the highest impact forces when dropped onto a watery surface. Read More »

More Articles