Synopsis

Wind blowing over an ultracold sea

Physics 3, s177
The interface between two Bose-Einstein condensates may provide new physical insights into fluid dynamics.
Credit: N. Suzuki et al., Phys. Rev. A (2010)

Kelvin-Helmholtz instabilities can occur at the interface between two fluids in relative motion. This happens, for example, when wind blows over the surface of the sea, forming waves, as well as in many similar situations involving immiscible classical fluids. It also occurs in more exotic cases, for instance, at the interface between two superfluids, such as the A and B phases of superfluid helium- 3. On the other hand, if the two fluids are partially miscible and their interface is thick, a different dynamical instability, known as counter-superflow instability, may also arise.

In a paper published in Physical Review A, Naoya Suzuki at the University of Electro-Communications in Tokyo and collaborators, also in Japan, show that gaseous two-component Bose-Einstein condensates may represent an ideal testing ground for textbook concepts of fluid dynamics, because the miscibility and the interface thickness can be tuned by a clever use of Feshbach resonances and external potentials. Their numerical simulations, based on the solution of a nonlinear Schrödinger equation, illustrate how a Kelvin-Helmholtz instability converts into a counter-superflow instability when the interface thickness is continuously increased. The authors propose experiments to test their ideas, which should be within the reach of current technology. – Franco Dalfovo


Subject Areas

Atomic and Molecular PhysicsFluid Dynamics

Related Articles

Cold Calculus: Modeling Heat Exchange in the Arctic
Fluid Dynamics

Cold Calculus: Modeling Heat Exchange in the Arctic

A new model captures the flow of heat from ocean water into floating ice, providing an important input for efforts to predict future melting in the Arctic. Read More »

Entanglement Can Improve Precision of Gravity Measurements
Atomic and Molecular Physics

Entanglement Can Improve Precision of Gravity Measurements

The first measurement of gravity using quantum mechanically entangled atoms demonstrates the potential of the approach. Read More »

Soft Solid Flows Through a Pipe
Fluid Dynamics

Soft Solid Flows Through a Pipe

An ultrasoft material can move smoothly through a pipe, but the motion generates “furrows” on the material’s front surface. Read More »

More Articles