Synopsis

Diffusion in a membrane

Physics 4, s113
Calculations elucidate how the lateral diffusion of macromolecules within a liquid membrane depends on the properties of the solvent layer surrounding it.
Carnegie Mellon University/Gordon Rule

Understanding the Brownian motion of macromolecules embedded in a liquid membrane is important because it underlies many fundamental biological and chemical interactions. Calculations have shown that the diffusion coefficients of inclusions moving within the membrane generally increase when the thickness of the solvent on either side of the membrane increases, but this earlier work was limited either to numerical calculations or to certain limiting cases. Now, in Physical Review E, Kazuhiko Seki at the AIST in Tsukuba, Japan, and his colleagues have presented largely analytical results for diffusion coefficients that can take into account solvent layers of arbitrary thickness.

Interactions between the solvent and the membrane exert a drag force, affecting hydrodynamic flow of inclusions in the membrane. This effect may be characterized by a hydrodynamic screening length that depends on the thickness of the solvent. Seki et al. introduce an analytical expression relating diffusion coefficients to these screening lengths. For solvents of finite thickness, the equations yield multiple hydrodynamic screening lengths, together with weight factors. In some cases, only the largest hydrodynamic screening length determines diffusion coefficient, and Seki et al. have tabulated the conditions, such as the membrane and solvent viscosity, the size of the inclusion, and the solvent depth, under which this approximation holds.

This work extends previous calculations of limiting cases and clarifies the limits of their validity. Calculations such as these are becoming increasingly relevant as technological advances make it possible to observe micron-sized objects in membranes. – Margaret Foster


Subject Areas

Soft MatterBiological PhysicsChemical Physics

Related Articles

Unjammed Emulsions Collapse to Liquids
Soft Matter

Unjammed Emulsions Collapse to Liquids

An emulsion’s rigidity disappears when the droplets’ random thermal motion overcomes the confining pressure that binds them. Read More »

Weightless Particles Prove Granular Gas Theory
Soft Matter

Weightless Particles Prove Granular Gas Theory

Experiments in near-zero gravity establish the validity of the fundamental theory of granular gases. Read More »

Finding a “Curveball” Equivalent for Microscopic Particles
Fluid Dynamics

Finding a “Curveball” Equivalent for Microscopic Particles

A small charged particle suspended in an electrolyte can swerve like a spinning baseball when exposed to a strong enough electric field. Read More »

More Articles