Synopsis

Defeating Bedlam

Physics 4, s189
Combining two noisy information channels can yield noiseless information transmission.
Jianxin Chen et al., Phys. Rev. Lett. (2011)

How much information can be transmitted over a noisy channel? Noise plagues nearly every channel, and thus error-correction must be used to maximize the transmission rate; by adding more and more channels the error can be driven to zero. However, some channels are so noisy that, like a blocked drainpipe, nothing useful can get through. Extending the analogy, it would seem crazy to think that combining two such blocked pipes would let the water flow, yet in the case of quantum mechanics, theorists have shown that the phenomenon of entanglement can clear out the information stoppage.

Writing in Physical Review Letters, Jianxin Chen, at the University of Guelph and the University of Waterloo, Canada, and colleagues show theoretically that pairs of “noise-blocked” quantum channels can, in combination, transmit classical information with zero error. This is a form of “superadditivity,” an effect in which the upper limit of information capacity of two combined channels can exceed the summed capacities of the individual channels. The authors show that not only can noise be entirely defeated for transmitting classical information over quantum channels, but that the result also holds for quantum information, which is more fragile and beset by decoherence. – David Voss


Subject Areas

Quantum Information

Related Articles

More Versatile Quantum Sensors
Quantum Information

More Versatile Quantum Sensors

Quantum sensors can now detect signals of arbitrary frequencies thanks to a quantum version of frequency mixing—a widely used technique in electronics. Read More »

Controlling Single Photons with Rydberg Superatoms
Atomic and Molecular Physics

Controlling Single Photons with Rydberg Superatoms

New schemes based on Rydberg superatoms placed in optical cavities can be used to manipulate single photons with high efficiency. Read More »

Parametric Amplification for Silicon Quantum Devices
Quantum Information

Parametric Amplification for Silicon Quantum Devices

A new design based on the quantum capacitance of a silicon quantum dot could enable scalable, high-fidelity qubit readout. Read More »

More Articles