Synopsis

Quantum simulation of an old paradox

Physics 4, s20
Experiments on trapped ions simulate the unusual quantum mechanics of relativistic particles.
Credit: R. Gerritsma et al., Phys. Rev. Lett. (2011)

The quantum-mechanical behavior of even simple systems can be hard to calculate using classical computers. Experimenters are exploring various ways to simulate this behavior by measuring what happens in analogous quantum systems whose parameters can be precisely controlled.

Writing in Physical Review Letters, René Gerritsma and colleagues at the University of Innsbruck, Austria, and collaborators in Spain use trapped ions to reproduce the classic Klein paradox, in which a relativistic particle seems to be transmitted unhindered into a potential barrier. If the barrier is large and abrupt enough, the particle can effectively continue on by transforming into its antiparticle, according to equations that describe single relativistic particles.

The mathematical mixture of particle and antiparticle that appears in these equations is represented in Gerritsma et al.’s experiment by a superposition of two electronic states of a single trapped ion. Similarly, position (in space) maps to a vibrational excitation on the ion, which the researchers coupled to the ion’s electronic state using laser illumination. Introducing a second ion lets them mimic a tunable potential that increases linearly with position. As expected from the equations describing the Klein paradox, a simulated “particle” wave packet reflects almost completely from a gently inclining potential. But a steeper potential induces a partial switch to the “antiparticle” state, which continues propagating into the barrier.

Quantum simulation of systems with additional particles only requires including more ions in the trap, the authors say, and could be a tool for emulating systems beyond practical reach for classical computations. – Don Monroe


Subject Areas

Atomic and Molecular Physics

Related Articles

Laser-Cooled Atoms and Molecules Collide in a Trap
Atomic and Molecular Physics

Laser-Cooled Atoms and Molecules Collide in a Trap

An experiment shows the circumstances under which ultracold atoms are quick to kick molecules out of a trap, providing clues for how to use atoms as a refrigerant for molecules. Read More »

Ion Microscopy Goes Quantum
Quantum Physics

Ion Microscopy Goes Quantum

Researchers have developed an ion-optics-based quantum microscope that has sufficient resolution to image individual atoms. Read More »

Femtosecond Probe Catches Electrons Relaxing
Atomic and Molecular Physics

Femtosecond Probe Catches Electrons Relaxing

Pump-probe experiments measure the time it takes for electrons to thermalize and cool after photoexcitation. Read More »

More Articles