Synopsis

Switched on ferroelectrics

Physics 4, s52
Combining a manganite electrode with a ferroelectric tunnel junction could show an impressive tunneling effect.
Credit: J. D. Burton and Evgeny Tsymbal, Phys. Rev. Lett. (2011)

As we move beyond silicon-based electronics, degrees of freedom other than charge (for example spin and polarization) will become prominent in devices. An example is the ferroelectric tunnel junction, which utilizes electric polarization to control electron transport. In addition, multiferroic material systems have shown promise in controlling magnetism through electrical means.

In their paper in Physical Review Letters, John D. Burton and Evgeny Tsymbal, of the University of Nebraska-Lincoln, US, use first-principles density-functional calculations to explain how combining a ferroelectric tunnel junction with a magnetic electrode may generate a giant tunneling electroresistance effect (i.e., a change in resistance with reversal of ferroelectric polarization).

The proposed device relies on a manganite electrode that changes from a ferromagnet to an antiferromagnet as the hole density increases. At the interface between the ferroelectric and the manganite, polarization charges in the ferroelectric are screened by opposite charges building up in the manganite, resulting in a change in hole concentration. For an appropriately doped manganite, the transition to antiferromagnetism can be induced near the interface by reversing ferroelectric polarization. The induced change in magnetic order near the interface results in a change in tunneling conductance. The effect can be tested by building a series of ferroelectric tunnel junctions with a variety of doped manganite electrodes. Above a critical doping, the predicted effect should appear. – Daniel Ucko


Subject Areas

Materials Science

Related Articles

Toward a Complete Theory of Crystal Vibrations
Materials Science

Toward a Complete Theory of Crystal Vibrations

A new set of equations captures the dynamical interplay of electrons and vibrations in crystals and forms a basis for computational studies. Read More »

Global Connectivity Predicts Reactivity
Energy Research

Global Connectivity Predicts Reactivity

The reactivity of a material is describable using only the arrangement of its atoms, a finding that could be used to speed up the search for new catalytic materials. Read More »

From Crystal to Nanowire
Condensed Matter Physics

From Crystal to Nanowire

Researchers have demonstrated a way to sift a database of crystalline compounds for structures that can be separated into useful one-dimensional materials. Read More »

More Articles