Synopsis

Preventive circuitry

Physics 4, s56
In transistor circuits, preventing logical errors with physical fault tolerance is more efficient than correcting errors with a fault-tolerant architecture.
Credit: Sami Mitra

The electronics industry’s access to smarter, lighter, and more powerful devices depends on whether transistor circuits—the building blocks of such devices—can process large amounts of information. As circuits get faster and smaller, errors—arising from heat dissipation, noise, and structural disorder—in the physical information they process can impede development. Experts debate on whether to concentrate on inherent physical fault tolerance that prevents error generation, or on architectural fault tolerance that corrects errors by sophisticated algorithms.

Writing in Physical Review Letters, Thomas Szkopek at McGill University, Canada, and colleagues in the US quantify these error-suppressing processes for model nanoelectronic systems. Using the electron number as the dimensionless size parameter for logic gates, they estimate the minimum number of electrons necessary for reliable circuit logic. They find that the physical fault tolerance in transistor circuits suppresses the error rate per electron number exponentially, compared to only subexponential suppression of error rate in the most efficient fault-tolerant architecture of logical gates. Their conclusion—that error prevention is better than error correction—has implications for transistor device technologies and CMOS scaling, and may impose a minimum limit on the size of devices. – Manolis Antonoyiannakis


Subject Areas

Quantum InformationSemiconductor PhysicsNanophysics

Related Articles

Quantum Dots For Reliable Quantum Key Distribution
Quantum Information

Quantum Dots For Reliable Quantum Key Distribution

The efficiency of a quantum cryptography scheme can be improved by replacing conventional attenuated lasers with single-photon quantum-dot sources. Read More »

Enhanced Light Emission Improves Atom Readout
Atomic and Molecular Physics

Enhanced Light Emission Improves Atom Readout

An atom’s quantum state can be determined quickly and accurately thanks to a strategy for making the atom brighter. Read More »

Cold-Trapped Atoms Stay Trapped Longer
Quantum Information

Cold-Trapped Atoms Stay Trapped Longer

By housing an optical tweezer array inside a cryogenic vacuum chamber, researchers have trapped rubidium Rydberg atoms for up to 50 minutes. Read More »

More Articles