Synopsis

Finding Quantum Keys in Noisy Fibers

Physics 5, s176
“Quantum keys” can be sent long distances on high-traffic optical fibers.

A “quantum key” provides data security by alerting users of eavesdropping. Previous trials of transmitting quantum keys have employed a dedicated optical fiber, but this is expensive. A new filtering technique could, however, allow quantum keys to be sent alongside data on the same fiber. Experiments reported in Physical Review X demonstrate key transmission over 90 kilometers, at a bit rate orders of magnitude higher than previous attempts.

Imagine Alice is sending an encrypted message to Bob. To read it, Bob will need a decryption key, which could be encoded into the quantum states of, for example, a stream of polarized photons. If a third party peeked at the key, the measurement would irrevocably disturb the quantum states, and Alice and Bob would be aware of a security breach. Current research efforts are aimed at incorporating keys with data on a single fiber, but the main obstacle has been retrieving the key signal out of the photon noise from the millionfold brighter data signal.

Ketaki Patel of Toshiba Research Europe Ltd in Cambridge, UK, and her colleagues have devised a temporal filtering scheme for separating keys from data. Using multiple wavelength channels, the researchers sent a key on a fiber with bidirectional data traffic. The dominant noise in the key channel came from inelastic (Raman) scattering out of the data channels. To filter this out, the team installed subnanosecond gated photodiodes that captured the key-carrying laser pulse, while ignoring much of the random (time-independent) scattering. The results support the prospects of quantum key distribution over metropolitan networks. – Michael Schirber


Subject Areas

Quantum Information

Related Articles

Demonstrating Quantum Communication Under Realistic Conditions
Quantum Information

Demonstrating Quantum Communication Under Realistic Conditions

Researchers achieve secure “real-world” quantum communication along 428 km of optical fiber, the longest terrestrial distance outside of a lab setting. Read More »

Quantum Machine Learning for Data Classification
Quantum Information

Quantum Machine Learning for Data Classification

Quantum machine-learning techniques speed up the task of classifying data delivered by a small network of quantum sensors. Read More »

Microwave Squeezing Beyond 3 dB
Quantum Physics

Microwave Squeezing Beyond 3 dB

Researchers suppress measurement fluctuations of microwaves in a cavity to below that of vacuum. Read More »

More Articles