Synopsis

Mapping the Topology of a Cold World

Physics 5, s38
A protocol is proposed to map the local Berry curvature over the Brillouin zone of cold atoms in an optical lattice.
H. M. Price and N. R. Cooper, Phys. Rev. A (2012)

The properties of particles in periodic potentials are determined not only by the energy-band structure but also by the topology of the eigenstates in the bands. Following a closed trajectory in momentum space within the Brillouin zone, a particle may acquire a Berry phase that is the integral of the Berry curvature over the surface bounded by the contour. The periodicity of the lattice requires that the integral over the entire Brillouin zone is quantized, which implies the existence of topological invariants underlying the behavior of the system.

In a paper appearing in Physical Review A, Hannah Price and Nigel Cooper at the University of Cambridge, UK, propose a new protocol for mapping the local Berry curvature in ultracold gas experiments. The idea consists of adiabatically moving an atomic wave packet in a two-dimensional lattice subjected to an external force. Even though the trajectory in real-space is very complicated, the path in momentum space can be traced and, most importantly, the force can be cleverly managed in such a way to measure the effect of the Berry curvature at each point in the Brillouin zone.

Price and Cooper show how their protocol is expected to work in the case of an asymmetric hexagonal lattice and in the so-called “optical flux lattices,” where the atoms feel an artificial magnetic field with high flux density. They also provide concrete arguments about the feasibility of experiments with the state-of-the-art techniques. A successful program in this direction could eventually open new perspectives in the study of quantum Hall physics in ultracold gases and, more generally, of topological effects in the dynamics of matter waves. – Franco Dalfovo


Subject Areas

Atomic and Molecular Physics

Related Articles

Midcircuit Operations in Atomic Arrays
Atomic and Molecular Physics

Midcircuit Operations in Atomic Arrays

Three research groups have exploited the nuclear spins of ytterbium-171 to manipulate qubits before they are read out—an approach that could lead to efficient error-correction schemes for trapped-atom computing platforms. Read More »

It’s a Trap—for Lanthanides
Atomic and Molecular Physics

It’s a Trap—for Lanthanides

Trapping and imaging single dysprosium atoms extends the utility of optical tweezer arrays to electronically complex species, opening the door to new quantum physics studies. Read More »

Solution for Atomic Clock Puzzle
Optics

Solution for Atomic Clock Puzzle

The resolution of a major discrepancy between theory and experiment for strontium atomic clocks could help improve the precision of these timekeepers. Read More »

More Articles