Synopsis

Fluid Invasion

Physics 5, s99
A phenomenon called capillary fracturing determines how fluids drain into tightly packed porous granular media.
R. Holtzman et al., Phys. Rev. Lett. (2012)

The cracks that form in drying soil or paint are evidence of fracture in wet granular materials. Similar fracturing also plays a role in environmentally sensitive scenarios such as extracting petroleum from the deep seas, CO2 sequestration, and fracking, where pressurized fluid is injected into rocks to release natural gas.

These are all examples of one fluid displacing another in porous media. While work in recent years has contributed to a clearer understanding of this wide-ranging phenomenon, most of it focused on either rigid porous media or porous materials with a low packing density. In Physical Review Letters, Ran Holtzman and colleagues at the Massachusetts Institute of Technology, Cambridge, address how the fluid-fluid displacement takes place in a frictional granular material at high packing fraction. They injected air into a cylinder containing tightly packed water-saturated glass beads, while varying the injection rate of the air, the size of the beads, and the confinement stress from weights placed on a rigid disk that rests on top of the beads. They observed that there are three ways—distinguished by the pattern of the air’s path through the beads—in which one fluid can invade another: capillary fingering, viscous fingering, and capillary fracturing, which result from competition between the viscous and capillary forces on the one hand and pressure forces and internal friction on the other. The authors’ experiment and scaling analysis show that capillary fracturing is a consequence of the interfacial tension between the fluids and can take place at vanishingly small injection rates, unlike, say, fracking. – Sami Mitra


Subject Areas

Fluid DynamicsSoft Matter

Related Articles

Alignment of Cells Affects Secondary Tumor Growth
Soft Matter

Alignment of Cells Affects Secondary Tumor Growth

Cell–cell alignment and a background of stationary cells together shape the emergence of cellular clusters in a primary tumor. Read More »

Drip Physics Produces Flexible Stalactite-Like Surface
Soft Matter

Drip Physics Produces Flexible Stalactite-Like Surface

By repeatedly applying coats of a hardening polymer to a surface, researchers have created rubbery stalactite-like formations that could be useful in soft robotics. Read More »

How Earth’s Magnetic Field Influences Flows in the Planet’s Core
Fluid Dynamics

How Earth’s Magnetic Field Influences Flows in the Planet’s Core

A “Little Earth Experiment” inside a giant magnet sheds light on so-far-unexplained flow patterns in Earth’s interior. Read More »

More Articles