Synopsis

Measuring Nothing

Physics 6, s76
Transitions in an atom can allow nondestructive measurement of the quantum vacuum state.
D. K. L. Oi et al., Phys. Rev. Lett. (2013)

Measuring empty space should be easy—just put a detector out and watch as it doesn’t do anything. In quantum mechanics, things are more subtle because empty space isn’t really empty and, typically, measuring a state destroys it, at least for subsequent measurements. As Daniel Oi at the University of Strathclyde, UK, and colleagues propose in Physical Review Letters, a single atom might be able to signal the presence or absence of the photon field vacuum state without otherwise altering it.

Oi et al. theoretically analyze a single three-level atom coupled to an optical cavity for storing photons. This atom has a special energy-level diagram—one excited state connected to two lower levels by separate transition paths—called a lambda system. One transition (call it A) is excited by a laser while the other (B) is only in contact with the cavity.

With suitable laser pulses, the atom can, in principle, be forced to evolve in a controllable way such that its state depends on the absence of a photon (vacuum) or presence of one or more photons in the cavity. If there is at least one photon in the cavity, and the atom starts in state B, it will end up in state A while pulling out the photon. Conversely, if the cavity is in a vacuum state (empty), the atom will stay in state B, and the cavity stays empty. This setup would allow multiple sequential operations, or could add new photons or extract one photon at a time from an existing cavity field. – David Voss


Subject Areas

Quantum Information

Related Articles

How to Move Multiple Ions in Two Dimensions
Quantum Information

How to Move Multiple Ions in Two Dimensions

A scheme that moves electromagnetically trapped ions around a 2D array of sites could aid development of scaled-up ion-based quantum computing. Read More »

Can Classical Worlds Emerge from Parallel Quantum Universes?
Quantum Information

Can Classical Worlds Emerge from Parallel Quantum Universes?

Simulations deliver hints on how the multiverse produced according to the many-worlds interpretation of quantum mechanics might be compatible with our stable, classical Universe. Read More »

Qubit Readout Mystery Solved
Quantum Information

Qubit Readout Mystery Solved

Theoretical work provides a long-awaited explanation for why measurements of qubits in superconducting quantum computers are less accurate than expected. Read More »

More Articles