Synopsis

Motion in the Ocean

Physics 7, s30
A new study suggests only the topmost part of the seafloor is relevant in determining the conversion of tidal energy to wave energy in the ocean.
L. Zhang et al., Phys. Rev. Lett (2014)

The Earth’s climate is strongly affected by the ways in which energy moves into, out of, and around the oceans. One important component of energy flow is the conversion of tidal motion—changes in sea levels caused by gravitational effects of the Moon—into internal ocean waves. Such waves directly influence mixing of water from regions with different temperature and salinity, as well as overall circulation. In a paper in Physical Review Letters, Likun Zhang and Harry Swinney at the University of Texas at Austin, present numerical simulations of how tidal flow over seafloor ridges is transformed into wave energy. They find that only the topmost parts of seafloor topography contribute to wave generation, in effect creating a “virtual seafloor.” It is only above it that tidal energy can be converted to wave energy.

The efficiency of tidal-to-wave energy conversion is difficult to calculate owing to the complex structure of the seafloor: When sea levels rise and fall, water moves up and down on top of underwater mountains and ridges; the vertical motion of the sea bounces off the slopes of these topographic features to create sideways oscillations that form a complex structure of internal ocean waves. Zhang and Swinney carried out simulations on both sinusoidal and random seafloor topographies and discovered that, some distance below the peaks of these structures, no conversion takes place. The reason is that wave interference cancels out tidal-to-internal energy conversion below this virtual seafloor. As a result, the authors suggest that future simulations of this important process can be simpler and more accurate because any topography below the virtual seafloor can be ignored. – David Voss


Subject Areas

Fluid DynamicsGeophysics

Related Articles

Windbreaks May Improve Wind Farm Power
Fluid Dynamics

Windbreaks May Improve Wind Farm Power

Simulations suggest that optimally placed barriers could boost wind farm performance by as much as 10%. Read More »

Testing a 150-year-old Hydrodynamics Prediction
Fluid Dynamics

Testing a 150-year-old Hydrodynamics Prediction

A new experiment finds that a sphere with “fins” maintains its orientation in a flowing fluid, despite a 19th century prediction that it would spin. Read More »

Binary Liquid Mixtures Form Flattened Droplets
Soft Matter

Binary Liquid Mixtures Form Flattened Droplets

Droplets made of a mixture of two liquids with different volatilities take on a pancake shape. Read More »

More Articles