Synopsis

Little Higgs Gives Warm Inflaton a Hand

Physics 9, s107
A concept borrowed from particle physics models called little Higgs gives new strength to the theory of warm inflation.
João G. Rosa/University of Aveiro; ESA and the Planck collaboration

Two decades after it was proposed as an alternative view of inflation, warm inflation, which involves warm rather than cold cosmic temperatures, has still not grown into a full-fledged theory. Unlike for standard inflation, researchers have not been able to build a simple and compelling model for warm inflation from first principles. Until now, that is. In a new study, the original proponent of warm inflation, Arjun Berera from the University of Edinburgh, UK, and colleagues have borrowed a concept from particle physics theories to derive just such a model. The result dispels the prevailing view that developing simple first-principles models of warm inflation would be impossible.

In standard inflation, any preexisting radiation is stretched and dispersed during a brief cosmic phase and no new radiation is produced. The Universe’s temperature plummets by several orders of magnitude, and an ensuing reheating period fills the Universe with radiation again. Warm inflation is simpler. New radiation is constantly produced by the decay of the scalar field that triggers inflation, the inflaton; the temperature remains large; and there is no reheating phase. Ironically, however, models of warm inflation have so far required thousands of additional fields to be coupled to the inflaton to avoid large corrections to its mass.

Making use of a mechanism that stabilizes the Higgs boson mass in particle physics theories called little Higgs, Berera and colleagues built a model involving only four additional fields and no mass corrections. The researchers then compared the model’s observational predictions with constraints on inflation derived from Planck satellite measurements of the cosmic microwave background radiation and found good agreement between the two.

This research is published in Physical Review Letters.

–Ana Lopes

Ana Lopes is a Senior Editor of Physics.


Subject Areas

CosmologyParticles and Fields

Related Articles

Sterile Neutrino Down but Not Completely Out
Particles and Fields

Sterile Neutrino Down but Not Completely Out

Neutrino experiments place the most stringent limits to date on a hypothetical fourth neutrino, but the possibility that such a particle exists remains open. Read More »

Powdering Up for Neutrinos
Particles and Fields

Powdering Up for Neutrinos

The search for neutrinos from past supernovae is getting an upgrade as Japan’s Super-Kamiokande experiment begins adding gadolinium powder to its giant water-based detector. Read More »

Electron Accelerator Recycles Energy for a Brighter Beam
Particles and Fields

Electron Accelerator Recycles Energy for a Brighter Beam

A test electron accelerator reuses the energy of the particles in order to achieve a brighter beam without drawing more power from the grid. Read More »

More Articles