Synopsis

A Relativistic View of a Clumpy Universe

Physics 9, s69
Cosmologists have begun using fully relativistic models to understand the effects of inhomogeneous matter distribution on the evolution of the Universe.
CFHT/Coelum

The evolution of the Universe is described by Einstein’s equations of general relativity. These equations are very hard to solve, so cosmologists typically use approximations to deal with the clumpiness, or inhomogeneity, of the Universe. Two separate groups have, for the first time, simulated a clumpy universe using fully relativistic numerical methods. This is an important step towards improving the accuracy of cosmological models of galaxy formation and growth.

Researchers have generally dealt with the inhomogeneity of the Universe using N-body simulations based on Newton’s theory of gravity. These methods have given good fits to data from cosmic microwave background observations and galaxy surveys. But doubts have always remained over the predictions from these models because they neglect some features of general relativity.

James Mertens and Glenn Starkman from Case Western Reserve University and Tom Giblin of Kenyon College, both in Ohio, have taken numerical relativity methods developed for black holes and other compact objects and applied them to the problem of an inhomogeneous Universe. They start with a “toy universe” containing a distribution of matter density perturbations that is consistent with observations, and let it evolve according to general relativity. They find localized differences in the evolution compared to models that aren’t fully relativistic.

Eloisa Bentivegna from the University of Catania in Italy and Marco Bruni from the University of Portsmouth in the UK perform a similar simulation, using different initial conditions. They find that the expansion rate is spatially dependent and is up to 28% faster than average in under-dense regions. On the other hand, high-density regions begin to gravitationally collapse in a shorter period of time than in previous models, which could have implications for theories of the formation of the first galaxies and other large structures.

This research is published in Physical Review Letters and Physical Review D.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Cosmology

Related Articles

Inconsistency Turns Up Again for Cosmological Observations
Astrophysics

Inconsistency Turns Up Again for Cosmological Observations

A new analysis of the distribution of matter in the Universe continues to find a discrepancy in the clumpiness of dark matter in the late and early Universe, suggesting a fundamental error in the standard cosmological model. Read More »

Tension for a Hubble-Tension Solution
Astrophysics

Tension for a Hubble-Tension Solution

An early-Universe spike in dark energy could resolve a disagreement between two cosmic-expansion-rate measurements, but such a spike may conflict with observations of quasar spectra. Read More »

Dark Star Hypothesis Sees the Light of Day
Astrophysics

Dark Star Hypothesis Sees the Light of Day

Recent data from the JWST space observatory has identified several objects that are consistent with dark matter powered stars. Read More »

More Articles