Synopsis

A Tight Squeeze

Physics 9, s96
Researchers have created quantum states of light whose noise level has been “squeezed” to a record low.
A. Franzen and T. Steinhaus

Squeezed quantum states of light can have better noise properties than those imposed by classical limits set by shot noise. Such states might help researchers boost the sensitivity of gravitational-wave (GW) detectors or design more practical quantum information schemes. A team of researchers at the Institute for Gravitational Physics at the Leibniz University of Hanover, Germany, has now demonstrated a method for squeezing noise to record low levels. The new approach—compatible with the laser interferometers used in GW detectors—may lead to technologies for upgrading LIGO and similar observatories.

Squeezed light is typically generated in nonlinear crystals, in which one pump photon produces two daughter photons. Because the two photons are generated in the same quantum process, they exhibit correlations that can be exploited to reduce noise in measuring setups. Quantum squeezing can, in principle, reduce noise to arbitrarily low levels. But in practice, photon losses and detector noise limit the maximum achievable squeezing. The previous record was demonstrated by the Hanover team, who used a scheme featuring amplitude fluctuations that were about a factor of 19 lower than those expected from classical noise (12.7 dB of squeezing).

In their new work, the researchers bested themselves by increasing this factor to 32 (15 dB of squeezing), using a light-squeezing scheme with low optical losses and minimal fluctuations in the phase of the readout scheme. The squeezed states are obtained at 1064 nm, the laser wavelength feeding the interferometers of all current GW observatories.

This research is published in Physical Review Letters.

–Matteo Rini

Matteo Rini is the Deputy Editor of Physics.


Subject Areas

Quantum PhysicsOptics

Related Articles

Real-Time Measurements of Earth’s Spin and Tilt
Optics

Real-Time Measurements of Earth’s Spin and Tilt

An array of ring lasers provides the first continuous measurement of Earth’s motion from a single location. Read More »

Diffracting a Beam of Organic Molecules
Optics

Diffracting a Beam of Organic Molecules

Researchers create diffraction patterns using beams made of large organic molecules, a first step toward creating an interferometer for these systems. Read More »

A Speed Test for Ripples in a Quantum System
Quantum Physics

A Speed Test for Ripples in a Quantum System

Settling a theoretical debate, three studies show that there is a maximum speed at which a physical effect can travel through systems of long-range-interacting particles. Read More »

More Articles