Synopsis

Random Bit Stream from Cosmic Light

Physics 11, s48
To help test quantum physics, a new method generates random numbers using light from distant stars and quasars that presumably have no correlation with experiments on Earth.
J. Gallicchio/Harvey Mudd College

Quantum physics is well established, but some “loopholes” remain for those diehards who want to avoid its weird consequences. One of these loopholes, which affects so-called Bell experiments that test quantum physics, involves a possible correlation between the particles used in the experiments and the supposedly random selection of detector settings. Such a connection could alter the particles such that their behavior appears quantum when they reach the detector. To close this “freedom-of-choice” loophole, researchers have now devised a scheme that generates random numbers using light from distant stars and quasars.

Jason Gallicchio from Harvey Mudd College in California and his co-workers first developed their random-number generator to assign detector settings for a Bell test they carried out in 2017. Using light coming from Milky Way stars, they ruled out any local correlations between particles and detectors going back 600 years into the past (see 7 February 2017 Synopsis). They have now improved the protocol so that it works faster and with objects farther away. For their sources, they chose 50 stars and 12 quasars. Some of the latter are billions of light years away, which would mean that any sort of correlations with a terrestrial detector would need to have been established near the beginning of the Universe. The scheme picks bit values based on whether or not a detected photon’s wavelength is longer than 700 nm, producing random bits at a rate as high as 106 Hz using the stars, or 103 Hz using the quasars. This high-speed process could be useful in a “delayed-choice” experiment, in which a random generator chooses an interferometer’s settings after a particle enters the device and before it reaches the end.

This research is published in Physical Review A.

–Michael Schirber

Michael Schirber is a Corresponding Editor for Physics based in Lyon, France.


Subject Areas

Quantum Physics

Related Articles

Can Classical Worlds Emerge from Parallel Quantum Universes?
Quantum Information

Can Classical Worlds Emerge from Parallel Quantum Universes?

Simulations deliver hints on how the multiverse produced according to the many-world interpretation of quantum mechanics might be compatible with our stable, classical Universe. Read More »

Qubit Readout Mystery Solved
Quantum Information

Qubit Readout Mystery Solved

Theoretical work provides a long-awaited explanation for why measurements of qubits in superconducting quantum computers are less accurate than expected. Read More »

Qubits Manipulated on the Fly
Quantum Information

Qubits Manipulated on the Fly

A way to address the individual ions of a rotating ion crystal could allow scientists to perform quantum simulations in which each qubit can be carefully controlled. Read More »

More Articles