Synopsis: Disorder and dissonance in nanostructures

The phase coherence time of electrons in certain nanostructures may diverge at very low temperatures.
Synopsis figure
Illustration: Y. Niimi et al., Phys Rev. B (2010)

In experiments the phase coherence time of electrons in mesoscopic systems saturates, i.e., approaches, a finite limit at very low temperatures. This contradicts Fermi liquid theory, according to which the coherence time should keep increasing as the system approaches absolute zero temperature. Alternative theories indicate that saturation may be caused by intrinsic electron-electron interactions, but some extrinsic influences (such as a trace of magnetic impurities) are consistent with Fermi liquid theory. Theories also differ on how the phase coherence time should depend on disorder in the system—expressed as the diffusion coefficient—but this has been difficult to measure.

In a paper appearing in Physical Review B, Yasuhiro Niimi and collaborators from France, Japan, Germany, and Taiwan report success in measuring the coherence time in high-mobility GaAs/AlGaAs heterostructures at temperatures down to 25mK, while varying the diffusion coefficient by nearly three orders of magnitude. The researchers used a focused ion beam microscope to locally implant gallium ions into the heterostructure, tuning the disorder by varying the amount of implanted ions.

No saturation was observed in the phase coherence time, indicating that extrinsic mechanisms caused the saturation observed in previous experiments. The results are consistent with Fermi liquid theory over the large parameter space of temperature and disorder examined. – Brad Rubin


Features

More Features »

Subject Areas

Semiconductor PhysicsMesoscopicsNanophysics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

One molecule at a time

Read More »

Related Articles

Synopsis: Thermal Radiation Gets a Boost
Nanophysics

Synopsis: Thermal Radiation Gets a Boost

The thermal radiation transfer between two quartz plates separated by a 200-nm gap is 45 times greater than predicted by conventional laws for blackbodies. Read More »

Synopsis: Device to Probe Electron-Phonon Interactions
Semiconductor Physics

Synopsis: Device to Probe Electron-Phonon Interactions

Researchers use a cavity-coupled double quantum dot to study electron-phonon interactions in a nanowire. Read More »

Synopsis: Casimir Force Between Two Spheres
Quantum Physics

Synopsis: Casimir Force Between Two Spheres

Researchers use an atomic force microscope to measure the Casimir force between two spheres, paving the way for studying the force acting between objects of any shape. Read More »

More Articles