Synopsis: An all-organic almost one-dimensional ferromagnet

A new compound is found to be the best yet fully organic realization of a one-dimensional ferromagnet.
Synopsis figure
Credit: T. Sugano et al., Phys Rev. B (2010)

Organic magnets provide a fascinating playground for testing models of magnetism, as rich carbon chemistry allows one to tune the magnetic, optical, and other properties of these materials. Nitronyl nitroxides are a family of particularly versatile organic radicals, which provided the first example of a purely organic ferromagnet p-NPNN, formed by chains of weakly interacting molecules.

In a Rapid Communication published in Physical Review B, Tadashi Sugano and collaborators from Japan and the UK use muon-spin rotation and electron spin resonance techniques to study 2-benzimidazolyl nitronyl nitroxide (2-BIMNN), another member of the nitronyl nitroxides family. They find that 2-BIMMN displays long-range ferromagnetic ordering, with a transition temperature of Tc=1K. In the short list of quasi-one-dimensional purely organic ferromagnets, 2-BIMMN turns out to be especially interesting, as the ratio of the transition temperature to the exchange energy J that describes intrachain spin-spin interactions is small, indicating that the coupling between different chains is extremely weak, and therefore 2-BIMMN can serve as a nearly ideal model of a one-dimensional ferromagnetically coupled spin chain. – Ashot Melikyan


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Strongly Correlated Materials

Uncovering hidden order

Read More »

Next Synopsis


Graphene’s prisoners

Read More »

Related Articles

Synopsis: Small Particles Untangle Polymer Chains
Soft Matter

Synopsis: Small Particles Untangle Polymer Chains

Adding nanoparticles to molten polymer disentangles its constituent molecular chains, allowing them to flow more easily. Read More »

Synopsis: Straining After Quantum Dots
Semiconductor Physics

Synopsis: Straining After Quantum Dots

The positions of quantum dots inside a microstructure can be determined by monitoring how an applied strain affects the dots’ photoluminescence.   Read More »

Viewpoint: A New Twist on Relativistic Electron Vortices

Viewpoint: A New Twist on Relativistic Electron Vortices

Two studies explore the properties of vortices formed by electrons that travel at relativistic speeds. Read More »

More Articles