Synopsis: Tiny Bubbles Burn Just Fine

Bubbles of hydrogen and oxygen burn spontaneously if they are small enough.

Making things smaller often changes their behavior. For example, flammable gases don’t burn easily in micron-sized bubbles, because the relatively large surface area sucks away the heat needed to sustain combustion. But making the bubbles even smaller can reverse the situation.

In an article in Physical Review E, Vitaly Svetovoy of the University of Twente in the Netherlands and colleagues show evidence for spontaneous combustion in bubbles smaller than 200 nanometers in diameter. To generate hydrogen or oxygen gas from water, the researchers apply brief negative or positive voltage pulses to a submerged metal electrode. Nanobubbles of either gas alone persist and aggregate into larger bubbles. In contrast, rapidly alternating the voltage polarity creates mixed bubbles that disappear as the gases react.

The explosive combustion mechanically damages the nearby electrode and also causes a tiny but measurable heating of a nearby conductor used as a thermometer. The researchers suggest that in such small bubbles, surface tension creates many atmospheres of pressure that enhance the reaction, and fast dynamics may also influence the reaction. — Don Monroe


Features

More Features »

Announcements

More Announcements »

Subject Areas

Fluid DynamicsChemical Physics

Previous Synopsis

Materials Science

Doubly Shocked

Read More »

Next Synopsis

Quantum Information

Mirror, Mirror in Free Space

Read More »

Related Articles

Focus: Superpropulsion of Liquid Drops
Fluid Dynamics

Focus: Superpropulsion of Liquid Drops

An oscillating surface can propel a drop of water or a springy ball upward at a speed higher than that of the moving surface. Read More »

Synopsis: Teaching Fish How to Swim
Fluid Dynamics

Synopsis: Teaching Fish How to Swim

A new model of swimming fish and cetaceans pinpoints the parameters that matter most for efficient motion. Read More »

Synopsis: Saturn-Shaped Drops
Fluid Dynamics

Synopsis: Saturn-Shaped Drops

An electric field can pull apart a millimeter-sized oil drop, causing it to shed thin rings from its equator that then break up into tiny droplets. Read More »

More Articles