Synopsis: Termite Skyscrapers

A new model shows how complex termite nests can be built using only local interactions between the insects.
Synopsis figure
Andrea Perna/CRCA-CNRS-Toulouse

Termites are the high-rise builders of the bug world, with nests that can stretch several meters towards the sky. Thousands of the insects work together to construct an interconnected network of chambers and tunnels from excavated soil for a colony to live in. Now researchers have developed a model that shows how termites, aware only of their immediate vicinity, can build such large-scale, functional structures without a blueprint. The authors suggest the same model could be used to control and direct an army of efficient robotic builders without central supervision.

In the model used by Young-Ho Eom, from the IMT Institute for Advanced Studies in Italy, and colleagues, the growth of a nest initiates with a single tunnel that starts underground and terminates in a chamber. A series of rules then determine how the rest of the nest forms: New tunnels can emerge from any existing chamber, but they are most likely to stem from the most recently built chambers. The direction and length of each new tunnel is assigned according to distributions found in real nests. And each tunnel ends in a new chamber from which more tunnels can appear. In addition, less frequently used tunnels are chosen at random to become blocked, and neighboring chambers are merged together. The authors demonstrate that nests simulated according to these “local” rules share structural attributes—such as the shortest path connecting any two chambers—with termite nests found in Africa.

This research is published in Physical Review E.

–Katherine Wright


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological PhysicsStatistical Physics

Previous Synopsis

Next Synopsis

Quantum Physics

Grounding the Hubbard Model

Read More »

Related Articles

Viewpoint: 3D Imaging of Hopping Molecules
Biological Physics

Viewpoint: 3D Imaging of Hopping Molecules

The 3D motion of molecules at a solid-liquid interface is directly imaged for the first time. Read More »

Synopsis: A New Gauge for Age
Biological Physics

Synopsis: A New Gauge for Age

Wound healing experiments suggest that biological aging can be defined in a similar way to physical aging in soft materials like glasses. Read More »

Focus: Probing Cell Squishiness
Mechanics

Focus: Probing Cell Squishiness

A new atomic force microscopy technique can map the elastic properties of living cells. Read More »

More Articles